Abstract:
A speaker impedance may be determined by monitoring a voltage and/or current of the speaker. The calculated impedance may be used to determine whether the mobile device containing the speaker is on- or off-ear. The impedance determination may be assisted by applying a test tone low level signal to the speaker. The test tone may be inaudible to the user, but used to determine an impedance of the speaker at the frequency of the test tone. The impedance at that test tone may be used to determine whether a resonance frequency of the speaker is at a frequency corresponding to an on- or off-ear condition. The measured speaker impedance may be provided as feedback to an adaptive noise cancellation (ANC) algorithm to adjust the output at the speaker. For example, when the mobile device is removed from the user's ear, the ANC algorithm may be disabled.
Abstract:
A power train may have a power train input and a power train output, wherein the power train is configured to transfer electrical energy from the power train input to a load coupled to the power train output in conformity with one or more power train control signals. A scheduler may be configured to receive events from the power train and, responsive to each particular event, schedule execution of a thread of control instructions responsive to the particular event, wherein the thread is selected from a plurality of threads. A processor may be configured to execute the threads of control instructions scheduled by the scheduler, such that for each particular event the processor generates one or more power train control signals responsive to the particular event within a first switching cycle of receipt of the particular event or within a second switching cycle immediately subsequent to the first switching cycle.
Abstract:
An integrated circuit may have two signal paths: an open-loop modulator (which may comprise a digital-input Class-D amplifier) and a closed-loop modulator (which may comprise an analog-input Class-D amplifier). A control subsystem may be capable of selecting either of the open-loop modulator or the closed-loop modulator as a selected path based on one or more characteristics (e.g., signal magnitude) of an input audio signal. For example, for higher-magnitude signals, the closed-loop modulator may be selected while the open-loop modulator may be selected for lower-magnitude signals. In some instances, when the open-loop modulator is selected as the selected path, the closed-loop modulator may power off, which may reduce power consumption. In addition, one or more techniques may be applied to reduce or eliminate user-perceptible audio artifacts caused by switching between the open-loop modulator and the closed-loop modulator, and vice versa.
Abstract:
A method for cancelling ambient audio sounds in the proximity of a transducer may include receiving an error microphone signal indicative of the output of the transducer and ambient audio sounds at the transducer. The method may also include generating an anti-noise signal for countering the effects of ambient audio sounds at an acoustic output of the transducer, wherein generating the anti-noise signal comprises applying a feedback filter having a response that generates a feedback anti-noise signal based on the error microphone signal and applying a variable gain element in series with the feedback filter. The method may further include monitoring whether an ambient audio event is occurring that could cause the feedback filter to generate an undesirable component in the anti-noise signal and controlling the gain of the variable gain element to reduce the undesirable component.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as a converter in LED-based light bulbs. The power stage may be operated by a controller to maintain a desired current output to the LED load. A resistor may be coupled to the BJT through a switch at the emitter of the BJT. The switch may regulate operation of the BJT by allowing current flow to ground through the resistor. The controller may perform measurements of the resistor to allow higher accuracy determinations of the current through the BJT and thus improve regulation of current to the LED load.
Abstract:
In accordance with systems and methods of the present disclosure, an audio device may include an electrical terminal, an audio circuit, and a transducer load detection circuit. The electrical terminal may couple a transducer device to the audio device. The audio circuit may generate an analog audio signal, wherein the analog audio signal is coupled to the electrical terminal The transducer load detection circuit may detect a load impedance of the transducer device when the transducer device is coupled to the audio device from characteristics measured at the electrical terminal.
Abstract:
An interface for an array of digital microphones in an electronic device may include a head-end chip coupled to the digital microphones through a bus. The bus may be shared by each microphone of the array of microphones and be multiplexed to allow transmission of data from the microphones to the head-end chip and transmission of power from the head-end chip to the array of digital microphones. The head-end chip may perform signal processing on receive data from the array of digital microphones to create beamforming arrays. The array of microphones may include microphones with different characteristics to improve performance of the array of microphones.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as a converter in LED-based light bulbs. The power stage may be operated by a controller to maintain a desired current output to the LED load. A resistor may be coupled to the BJT through a switch at the emitter of the BJT. The switch may regulate operation of the BJT by allowing current flow to ground through the resistor. The controller may perform measurements of the resistor to allow higher accuracy determinations of the current through the BJT and thus improve regulation of current to the LED load.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods may include a controller configured to be coupled to an audio speaker, wherein the controller receives one or more signals indicative of one or more operating characteristics of the audio speaker and compares the one or more operating characteristics to one or more speaker protection thresholds, and based on the comparison, processes an audio input signal to generate an audio output signal communicated from the controller to the audio speaker, further wherein the one or more speaker protection thresholds are based on offline reliability testing of one or more audio speakers similar to the audio speaker and the controller generates one or more modeled parameters for the audio speaker and modifies the one or more speaker protection thresholds based on the one or more modeled parameters.
Abstract:
A fully depleted region may be used to reduce poly-to-substrate parasitic capacitance in an electronic device with poly-silicon layer. When the fully depleted region is located at least partially beneath the electronic device, an additional parasitic capacitance is formed between the fully depleted region and the substrate region. This additional parasitic capacitance is coupled in series with a first parasitic capacitance between a poly-silicon layer of the electronic device and the doped region. The series combination of the first parasitic capacitance and the additional parasitic capacitance results in an overall reduction of parasitic capacitance experience by an electronic device. The structure may include two doped regions on sides of the electronic device to form a fully depleted region based on lateral interaction of dopant in the doped regions and the substrate region.