Abstract:
The lighting and/or signaling system according to the invention comprises at least one lighting and/or signaling device which is able to emit at least one light beam and is equipped with at least one actuator for adjusting an angle of the light beam, and at least one actuator control device for controlling the actuator. According to the invention, the actuator control device transmits an active setpoint information item to the actuator only when a current value of the setpoint information item differs substantially from a previous value of the setpoint information item. The improved actuator control incorporated in the system according to the invention helps to achieve greater reliability and a longer service life.
Abstract:
The invention is a method for the decontamination of CO2 to a sufficient level of purity to allow it to be used in the semiconductor industry. The invention comprises the exposure of fluid CO2 to a combination metallic states of at least one metal under the appropriate conditions for removal of contaminants. The adsorbents are then decontaminated/activated to return the adsorbent to a mixed oxidation state and allow further rounds of decontamination. The adsorbents are selected to be complimentary to each other, preferentially adsorbing different contaminants. Additionally, the adsorbents are selected to undergo reduction differently such that upon regeneration only a portion of the metals are reduced and the adsorbent is returned essentially to its original state.
Abstract:
A method for the decontamination of fluid (liquid or supercritical) carbon dioxide fluid, especially of hydrocarbon contaminants, down to ≦100 ppb concentration are described. The critical component is a high silica zeolite, preferably a high silica Y-type zeolite, ZSM-5 or a high silica mordenite, which in a variety of physical forms is capable of decontaminating such fluid CO2 to ≦100 ppb, ≦10-50 ppb, or ˜1 ppb, without being detrimentally affected by the supercritical operating environment. The high silica zeolite may be produced by the removal of alumina from a natural or synthetic zeolite while retaining the desirable zeolite structure, to a silica:alumina ratio of from 20-2000:1. Preferably the zeolite is disposed in separate quantities in at least two vessels, which operate alternately. A portion of the purified product from the operating vessel is directed to the other vessel and there used to remove accumulated contaminants from that vessel's zeolite. The process thus provides self-regeneration, in that regeneration of one vessel occurs while the other vessel decontaminates contaminated fluid carbon dioxide, so that use of the two can be alternated for substantially continual production of purified fluid carbon dioxide. The invention provides purified fluid carbon dioxide used in manufacture of such products as high purity electronic, optical, prosthetic or similar products or polymers or pharmaceuticals or in beverages.
Abstract:
A process, composition and apparatus for the removal of water from moist non-corrosive gases (such as those containing oxygen or CO.sub.2) down to .ltoreq.10-20 ppb water concentration are described. The dehydrating agent is an oxide or salt of an electropositive metal and has a surface area of at least 140 m.sup.2 /g, preferably 140-500 m.sup.2 /g, is compatible with the gas, and preferably is capable of dehydrating such gases to .ltoreq.1 ppb, preferably to as low as 500 ppt. The electropositive metal will be a Group 3b, 4b or lanthanide metal or vanadium. The preferred agent is a high surface area titania, zirconia, yttria or vanadia, with titania most preferred. The dehydrating agent can be in the form of a pelleted or granular bulk material or a coating on or within the pores of a substrate. The agent is retained in a simple container which is easily installed in a gas supply line for the gas, such as to a gas- or vapor-deposition manufacturing unit. The dehydration process can be operated for long periods of time in the presence of these gases. The invention can be used to provide final dehydration to gas streams intended for gas- or vapor-deposition formation of high purity electronic, prosthetic, pharmaceutical, optical fiber or similar products, and can be used in combination with a preliminary dehydration process for such gases upstream of a solid particulate removal unit or molecular contaminant elimination unit downstream.
Abstract:
A process and apparatus for the removal of water from corrosive halogen gases, particularly chlorine- or bromine-containing gases, down to .ltoreq.100 ppb water concentration are described. The critical component is a high silica zeolite, preferably high silica mordenite, which in a variety of physical forms is capable of dehydrating such gases to .ltoreq.100 ppb or .ltoreq.50 ppb without being detrimentally affected by the corrosive nature of the gases in the presence of water. The high silica zeolite is produced by the removal of alumina from a natural or synthetic zeolite while retaining the desirable zeolite structure, to a silica:alumina ratio of from 20-2000:1. Metal cations which may be depleted by the alumina removal may be replaced by solution impregnation. Halogen- or halide-containing gases, or those with equivalent corrosion properties, may be dehydrated without deterioration of the high silica zeolite. The high silica zeolite is retained in a corrosion-resistant container which is installed in a gas supply line, such as to a gas- or vapor-deposition manufacturing unit. The invention provides final dehydration to corrosive halogen gas streams intended for gas- or vapor-deposition formation of high purity electronic, optical, prosthetic or similar products, and can be used in combination with upstream preliminary dehydration process and/or solid particulate removal units.
Abstract:
A wedge gate valve having a valve body defining a valve chamber and flow passages and upwardly diverging circular seat surfaces of circular, flat configuration and defining seat planes. A valve disk or wedge having downwardly converging sealing surfaces is movable within said valve chamber between open and closed positions for controlling flow through the valve. Pressure boundary plates connected by hubs to the valve disk define the sealing surfaces of the disk and have bottom corners that establish line contact with the downstream seat surface and prevent any portion of said sealing surfaces of said valve disk from crossing the sealing plane of the downstream seat in the event of flow responsive downstream movement of the valve disk during its opening and closing movement. Guide ears of the disk are provided with flexible upper and lower extremities and rounded or chamfered inner end surfaces to minimize localized peak contact stress with disk guide rails of the valve body. The center section of the disk is rendered flexible by the provision of an internal transverse cavity that extends completely through the center section or is located centrally of the center section to define flexible walls between the hubs to thus provide for disk flexibility for overcoming the tendency for disk binding. A valve actuator for opening and closing the valve disk is provided with an adjustable downstop to prevent overtravel of the disk during seating.
Abstract:
An apparatus, a system and a method for electrochemical generation of hydrogen are disclosed. The apparatus may include a cathode, a polymer electrolyte membrane surrounding the cathode and a housing surrounding the polymer electrolyte membrane. The housing may include an anode electrically connected to the cathode. The system for electrochemical generation of hydrogen may include a water purifier in fluid communication with a hydrogen generating unit, an electrolyte source in fluid communication with the hydrogen generation unit and a power source electrically connected to the hydrogen generating unit. The method may include passing water and electrolyte into the hydrogen generation unit and applying a voltage between the anode and the cathode to generate hydrogen gas.
Abstract:
A mechanism that provides congruent forwarding paths for unicast and multicast data traffic over a service provider core network includes issuing, by a receiver edge node, a request to join a multicast tree structure. A unicast path from the receiver edge node to a source node of the provider network is then established using a special message that contains an identifier. The identifier allows the unicast path through the core network to be aligned with the multicast tree structure. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A transfer container for transferring an object between environments is described. The transfer container comprises an enclosure; a purifier comprising a purification material, the purifier attached to the enclosure, the purifier configured to purify fluid flowing into the enclosure; and a fluid propelling means, attached to the enclosure, for propelling fluid through the purifier and into the enclosure.
Abstract:
A method, apparatus, or computer executable instructions for converting Protocol Independent Mode (PIM) requests. In one embodiment, the method includes receiving a first multicast routing protocol (MRP) message, wherein the first MRP message is a request to join a multicast group of receivers. The first MRP message is translated into a second MRP message, wherein the second MRP message is a request to join the multicast group of receivers to which data is being provided by a specific source. The method could be performed by a router contained in a sparse mode network, wherein the sparse mode network is coupled to a source specific mode network that contains the specific source.