Abstract:
The embodiments disclose a method of protecting patterned magnetic materials of a stack, including depositing a thin continuous film of an inert material that is inert to the magnetic materials of a patterned stack upon which the thin continuous film is being deposited and forming a thin interim interface layer from the thin continuous film to protect top and sidewall areas of non-etched higher relief magnetic islands and magnetic film etched surfaces of the patterned stack from air exposure damage and damage from contact with backfilled materials.
Abstract:
A planarization process may planarize a media disk that has data trenches between data features and larger servo trenches between servo features. A filler material layer is deposited on the media disk and provides step coverage of the trenches. The filler material has data recesses over the data trenches and servo recesses over the servo trenches that must be removed to produce a planar media surface. A first planarization process is used to remove the data recesses and a second planarization process is used to remove the servo recesses.
Abstract:
A patterned magnetic layer is formed by bombardment of a masked high Mrt magnetic layer with a combination of both heavy ion species and light ion species. The method can be implemented as sequential process steps or in a single process step with the proper heavy/light ion species mixture. Advantageously, the combined heavy/light ion species bombardment method results in a patterned magnetic layer having high topographical uniformity across its surface.
Abstract:
A method for measuring servo pattern irregularity and other servo information of pre-patterned servo media mounted on a spindle with the center of the pre-pattern tracks off center from the axis rotation of the spindle. An actuator is stepped radially while measuring the PES signals from the servo sectors of at least one highly eccentric track to form a cross track profile of the PES signals for each sector. A mathematical algorithm removes step measurement error from the data. A second mathematical algorithm removes non-repeatable random noise from the data. The amount of phase-in that radially aligns the respective cross track profiles is computed. Servo pattern written-in repeatable runout is determined by unwrapping the phase-in values to form a periodic curve.
Abstract:
A method and apparatus for data disks adapted to compensate for effects of shock loads imparted to a disk drive which are of sufficient magnitude to cause disk shifts. A series of topographical features are formed on the disk surface or edge to cause signal fluctuation in a sensor during read-back mode operation. An initial signal profile is stored as a map indicative of track or disk alignment with respect to the actuator assembly. Selectively, such as after a known shock event, the topographical features are re-profiled. A comparison of the profiles provides a measure of any track distortion which must be compensated for in future read-write operations by adjustments to data track servo follower algorithms.
Abstract:
A method for patterning a carbon-containing substrate utilizing a patterned layer of a resist material as a mask and then safely removing the mask from the substrate without adversely affecting the substrate, comprising sequential steps of: (a) providing a substrate including a surface comprising carbon; (b) forming a thin metal layer on the substrate surface; (c) forming a layer of a resist material on the thin metal layer; (d) patterning the layer of resist material; (e) patterning the substrate utilizing the patterned layer of resist material as a pattern-defining mask; and (f) removing the mask utilizing the thin metal layer as a wet strippable layer or a plasma etch/ash stop layer.
Abstract:
A method and apparatus for performing interferometric measurement/testing of flying heights of read-write head sliders utilizing an improved rotating disk, the disk having a central opening for use with a spindle for rotation about a central axis, the disk comprising: a substrate comprised of a light transmissive material and including a pair of opposed, smooth, major surfaces; and a wear-resistant, protective overcoat layer on one of the major surfaces for improving the tribological properties thereof; wherein the optical properties of the one surface of the disk are optimized for enhancing the sensitivity of the interferometric measurement/testing by increasing the intensity of reflected light received by a detector of the apparatus.
Abstract:
A method for producing a substantially smooth surface on a computer disk media comprises providing a substantially smooth master surface. A curable polymer dielectric composition is applied to the master surface as well as the surface of the disk to be smoothed. The master surface is then pressed onto the disk surface and the polymer is cured. The master surface is then removed and the cured polymer forms a smooth surface on the disk.
Abstract:
A planarization process may planarize a media disk that has data trenches between data features and larger servo trenches between servo features. A filler material layer is deposited on the media disk and provides step coverage of the trenches. The filler material has data recesses over the data trenches and servo recesses over the servo trenches that must be removed to produce a planar media surface. A first planarization process is used to remove the data recesses and a second planarization process is used to remove the servo recesses.
Abstract:
A method for nano-patterning includes imprinting features in a resist with an imprint mold to form one or more topographic surface patterns on the imprinted resist. A a block copolymer (“BCP”) material is deposited on the imprinted resist, wherein a molecular dimension L0 of the BCP material correlates by an integer multiple to a spacing dimension of the one or more topographic surface patterns on the imprinted resist. The deposited BCP is annealed and at least a portion of the annealed BCP is removed, forming a template having discrete domains.