Abstract:
In an integrated decision feedback equalizer and clock and data recovery circuit one or more flip-flops and/or latches may be shared. One or more flip-flops and/or latches may be used in retiming operations in a decision feedback equalizer and in phase detection operations in a clock recovery circuit. Outputs of the flip-flops and/or latches may be used to generate feedback signals for the decision feedback equalizer. The output of a flip-flop and/or latches may be used to generate signals that drive a charge pump in the clock recovery circuit.
Abstract:
The invention relates to a Class AB operational amplifier providing both output gain enhancement and adaptative output bias. The operational amplifier includes first and second output terminals; a main differential stage having first and second differential inputs and a first differential output stage; a first adaptatively biased, boosted output stage coupling the first differential output stage to the output terminal. Each output stage includes a first NMOS output transistor having a control terminal, a first terminal coupled to the respective output terminal, and a second terminal, and includes a first output amplifier having a first input coupled to the second terminal of the first output transistor, a second input coupled to the first differential output stage to provide adaptative bias for the first boosted output stage, and an output coupled to the control terminal of the first output transistor.
Abstract:
A device includes a first inductor positioned on a first substrate. The first inductor has at least one turn in a plane that is perpendicular to a plane of the first substrate. The first inductor is positioned for near field coupling with a second inductor. The second inductor is positioned on a second substrate, with at least one turn that is in a plane perpendicular to a plane of the second substrate. The second inductor is substantially parallel to the first inductor. Such an arrangement may be used for near field coupling, including edge-to-edge coupling, between two integrated circuits.
Abstract:
Apparatus and methods are taught for quickly determining whether a Loss of Signal (LOS) condition has occurred for a receiver which includes an internal reference clock, a LOS circuit and a Clock and Data Recovery (CDR) circuit. The CDR circuit recovers the clock and data of an incoming signal. However, the LOS circuit can determine whether a received incoming signal includes an active signal, independent of said CDR circuit such that it samples said incoming signal utilizing said internal reference clock to determine a loss of signal prior to said CDR recovering the clock of said incoming signal. The LOS circuit includes an analog voltage threshold stage which samples the incoming signal, and produces at least one sample stream indicative of transitions in the incoming signal. The LOS circuit further includes a digital transition stage which counts transitions in order to discriminate between an active signal and noise.
Abstract:
Apparatus and methods are taught for quickly determining whether a Loss of Signal (LOS) condition has occurred for a receiver which includes an internal reference clock, a LOS circuit and a Clock and Data Recovery (CDR) circuit. The CDR circuit recovers the clock and data of an incoming signal. However, the LOS circuit can determine whether a received incoming signal includes an active signal, independent of said CDR circuit such that it samples said incoming signal utilizing said internal reference clock to determine a loss of signal prior to said CDR recovering the clock of said incoming signal. The LOS circuit includes an analog voltage threshold stage which samples the incoming signal, and produces at least one sample stream indicative of transitions in the incoming signal. The LOS circuit further includes a digital transition stage which counts transitions in order to discriminate between an active signal and noise.
Abstract:
A first device transmits data over a first branch of a communications link toward a second device. That second device loops the received data pattern back over a second branch of the communications link. A bit error rate of the looped back data pattern is determined and a pre-emphasis applied to the transmitted data pattern is adjusted in response thereto. The first device further perturbs the data pattern communications signal so as to increase the bit error rate. The pre-emphasis is adjusted so as to reduce the determined bit error rate in the looped back data pattern in the presence of the perturbation. The steps for perturbing the signal and adjusting the pre-emphasis are iteratively performed, with the perturbation of the signal increasing with each iteration and adjustment of the pre-emphasis being refined with each iteration. The signal is perturbing by injecting modulation jitter into the signal (increasing each iteration) and adjusting amplitude of the signal (decreasing each iteration).
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface includes a line side interface, a board side interface, and a signal conditioning circuit. The signal conditioning circuit services each of an RX path and a TX path and includes a limiting amplifier and a clock and data recovery circuit. The signal conditioning circuit may also include an equalizer and/or an output pre-emphasis circuit. The limiting amplifier applies respective gains to the RX path and to the TX path that are based upon respective dynamic ranges of the incoming signals.
Abstract:
Methods, integrated circuits and computer-readable media for communicating back-channel data over a data link by modulating the phase or frequency of a clock signal of a data signal transmitted over the data link. Slow modulation of the clock signal allows it to be detected and extracted by a receiver without affecting the integrity or bit rate of the data signal. Some embodiments allow the functionality to be implemented without the use of extra hardware in the transmitter or receiver or either.
Abstract:
In an integrated decision feedback equalizer and clock and data recovery circuit one or more flip-flops and/or latches may be shared. One or more flip-flops and/or latches may be used in retiming operations in a decision feedback equalizer and in phase detection operations in a clock recovery circuit. Outputs of the flip-flops and/or latches may be used to generate feedback signals for the decision feedback equalizer. The output of a flip-flop and/or latches may be used to generate signals that drive a charge pump in the clock recovery circuit.
Abstract:
Systems and methods for optimizing operation of a transceiver device are disclosed. The method may include parallel processing an input signal through a first path having a first frequency response and a second path having a second frequency response. The second frequency response may be higher than the first frequency response. Signals from the first and second paths may be combined, creating an output signal having a desired gain and frequency. The parallel processing may adjust a gain of at least one of the first path and the second path. The parallel processing may equalize at least one of the first frequency response and the second frequency response. The input signal may be from a 10 GBit Ethernet channel and/or a Fibre channel.