Abstract:
An electronic device may have a display with a brightness that is adjusted based on ambient light data from one or more ambient light sensors. An ambient light sensor may be formed from a semiconductor substrate such as a silicon substrate. Sensor structures may be formed in the silicon substrate. Conductive vias or other conductive paths may be used to interconnect sensor structures on a frontside surface of the ambient light sensor to contacts on a backside surface of the ambient light sensor. The ambient light sensor may be mounted on a substrate layer in the electronic device. The substrate layer may be a planar layer of glass or plastic such as a transparent display layer. The contacts of the ambient light sensor may be mounted to corresponding contacts on the surface of the substrate layer. The substrate layer may be a thin-film transistor layer in a liquid crystal display.
Abstract:
A configurable photo detector circuit comprises a photo detector array including a plurality of photo detectors coupled to a plurality of amplifiers. A method for programming a detection pattern of the configurable photo detector circuit comprises selecting a first detection pattern for the photo detector array, generating first signals to create the first selected detection pattern, and applying the first generated signals to the photo detector circuit to implement the first selected detection pattern.
Abstract:
A multi-level signal uses the third/fourth signal level to signal both a word clock edge and a data word boundary. At the receiver, a level detector detects a transition to or from the third/fourth level as a clock signal transition and the word boundary. The bit clock can be recovered using a conventional clock multiplier. Bi-level signaling is used for data between the word boundaries. Additional signal states are available in the multi-level signal by modulating the pulse width at the third/fourth signal level.
Abstract:
A method of a fabricating a multiple wavelength adapted photodiode and resulting photodiode includes the steps of providing a substrate having a first semiconductor type surface region on at least a portion thereof, implanting and forming a second semiconductor type shallow surface layer into the surface region, and forming a multi-layer anti-reflective coating (ARC) on the shallow surface layer. The forming step includes depositing or forming a thin oxide layer on the shallow surface layer and depositing a second dielectric layer different from the thin oxide layer on the thin oxide layer. An etch stop is formed on the second dielectric, wherein the etch stop includes at least one layer resistant to oxide etch. At least one oxide including layer (e.g. ILD) is then deposited on the etch stop. The oxide including layer and etch stop are then removed to expose at least a portion of the ARC to the ambient.
Abstract:
Described herein are light sensors that primarily respond to visible light while suppressing infrared light. Also described herein are systems the incorporate such light sensors. Such a system can include a display, a light source to backlight the display and a controller to control the brightness of the light source based on feedback received from such light sensors. Described herein are also methods for controlling backlighting.
Abstract:
Methods and systems for allowing multiple devices to share the same serial lines (e.g., SDIO, SEN and SCLK) are provided. Such devices can be located, e.g., on an optical pick-up unit. Each device includes a serial interface, a device enable number (DEN) that differs from the DEN of each other device, and a plurality of registers, with at least one register being designated a device select register (DSR). The DSRs of the plurality of devices share a common address. The plurality of serial interfaces are collectively enabled and collectively disabled (e.g., via the SEN line). However, only one of the plurality of serial interfaces can be selected at one time, with the remaining of the plurality of serial interfaces being deselected. The serial interface of a device is selected when the DEN of the device is the same as the content of the DSR of the device, and deselected when the DEN of the device is not the same as the content of the DSR of the device.
Abstract:
Embodiments of the present invention generally relate to circuits, systems and methods that can be used to detect light beam misalignment, so that compensation for such misalignment can be performed. In accordance with an embodiment, a circuit includes a photo-detector (PD) having a plurality of electrically isolated PD segments. Additionally, the circuit has circuitry, including switches, configured to control how currents indicative of light detected by the plurality of electrically isolated PD segments are arithmetically combined. When the switches are in a first configuration, a signal produced by the circuitry is indicative of vertical light beam alignment. When the switches are in a second configuration, the signal produced by the circuitry is indicative of horizontal light beam alignment. The signals indicative of vertical light beam alignment and horizontal light beam alignment can be used detect light beam misalignment, so that compensation for such misalignment can be performed.
Abstract:
Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
Abstract:
Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
Abstract:
In accordance with an embodiment, a circuit includes a photodetector (PD) array including a plurality of electrically isolated PD sections. Additionally, the circuit includes a switching matrix that includes a plurality of inputs and a plurality of outputs, and that can be selectively configured in a plurality of different switch configurations. Each of the electrically isolated PD sections is adapted to detect light (if any) and provide an electrical output signal, indicative of the light detected by the PD section (if any), to a different one of the inputs of the switching matrix. The switching matrix is adapted to combine the electrical output signals provided by the electrically isolated PD sections in a plurality of different manners, in dependence on which of the plurality of different switch configurations is selected.