Abstract:
A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.
Abstract:
A method of manufacturing an optical waveguide includes: forming a first reflective bump and a second reflective bump, which have inclined surfaces formed on sides opposite to each other and which are disposed with a predetermined distance in-between, on an upper side of a conductive carrier; polishing the surfaces of the first reflective bump and the second reflective bump; forming a core between the first reflective bump and the second reflective bump; stacking an upper cladding over the upper side of the carrier to cover the first reflective bump, the second reflective bump, and the core; removing the carrier; and stacking a lower cladding over a lower side of the upper cladding. Forming reflective bumps on a conductive carrier, and polishing the reflective bumps to form inclined surfaces, can reduce lead time and can provide a high degree of freedom in design.
Abstract:
A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.
Abstract:
A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.
Abstract:
An optical printed circuit board which can transfer optical signal and electric signals simultaneously, and a method of fabricating the optical printed circuit board. An optical printed circuit board which includes an upper cladding layer, a core layer positioned in the upper cladding layer that has a first reflecting surface and a second reflecting surface at both ends to guide optical signals, a lower cladding layer of which one side is in contact with the upper cladding layer and which has a circuit pattern and light connecting bumps on the other side corresponding to the first reflecting surface and the second reflecting surface, may provide the advantage of high optical connection efficiency.
Abstract:
A packaging apparatus for optical interconnection on an optical PCB includes a first substrate with a via hole formed therethrough and in which an optical waveguide is formed, an optical interconnection block having a reflective plane on its lower end inserted into the via hole, a second substrate flip-bonded to an upper surface of the first substrate, and an optically active element flip-bonded to a lower surface of the second substrate and aligned for optical communication.
Abstract:
The present invention provides an optical flexible printed circuit board comprising: a base layer; an optical waveguide pattern disposed on a partial region of the base layer; an insulating layer which is disposed on the base layer with the optical waveguide pattern and has a surface profile bent by the optical waveguide pattern; and circuit wires disposed on one surface of the base layer.
Abstract:
Disclosed herein is a printed circuit board for an optical waveguide, including a base board, and an optical waveguide formed on the base board. The optical waveguide includes a lower clad layer formed on the base board, an insulation layer formed on the lower clad layer and having a core-forming through-hole, a core part formed on a region of the lower clad layer, which is exposed through the through-hole, and an upper clad layer formed in the through-hole and on the insulation layer.
Abstract:
An optical wiring board and a manufacturing method thereof are disclosed. In accordance with an embodiment of the present invention, the method includes providing a flexible optical waveguide layer, selectively forming a reinforcing clad on one surface of the optical waveguide layer and forming a mirror groove on the other surface of the optical waveguide layer in accordance with where the reinforcing clad is formed. Thus, the clad can be formed thick only on the place where the mirror groove is to be formed, and thus a flexible optical wiring board having flexibility can be manufactured even though the optical wiring board is generally made thin.
Abstract:
A printed circuit board is disclosed. The printed circuit board includes a first board unit and a second board unit disposed with a gap in-between, and a flexible optical board configured to transmit optical signals, which has one side stacked on the first board unit and the other side stacked on the second board unit, where the flexible optical board includes a core through which the optical signals travel, a cladding surrounding the core, and a circuit pattern buried in the cladding which transmits electrical signals. By forming the rigid boards and the flexible optical board as an integrated structure, the need for separate connectors is obviated, and thus the cost of the product can be lowered.