Abstract:
Disclosed herein is a printed circuit board for an optical waveguide, including a base board, and an optical waveguide formed on the base board. The optical waveguide includes a lower clad layer formed on the base board, an insulation layer formed on the lower clad layer and having a core-forming through-hole, a core part formed on a region of the lower clad layer, which is exposed through the through-hole, and an upper clad layer formed in the through-hole and on the insulation layer.
Abstract:
A method of manufacturing an optical component embedded printed circuit board, the method including: stacking a first insulation layer on one side of a metal core; embedding an optical component in a cavity formed in the metal core; stacking a second insulation layer of a transparent material on the other side of the metal core; and forming a circuit pattern on the first insulation layer, the circuit pattern electrically connected with the optical component.
Abstract:
A method of manufacturing a printed circuit board for optical waveguides, including: preparing a base substrate; forming an optical waveguide, which includes a lower clad, a core formed on an upper middle of the lower clad, and an upper clad formed on the lower clad to surround an upper surface and a side surface of the core, on an upper middle of the base substrate; disposing a side substrate including a first side substrate that has a through hole, through which the optical waveguide penetrates, provided at the middle thereof and a first circuit pattern formed therein and a second side substrate disposed on the first side substrate on the upper part of the base substrate on which the optical waveguide is formed; disposing an upper substrate on the side substrate on which the through hole is formed; and stacking the side substrate and the upper substrate on the base substrate on which the optical waveguide is formed.
Abstract:
A method of manufacturing an optical waveguide includes: forming a first reflective bump and a second reflective bump, which have inclined surfaces formed on sides opposite to each other and which are disposed with a predetermined distance in-between, on an upper side of a conductive carrier; polishing the surfaces of the first reflective bump and the second reflective bump; forming a core between the first reflective bump and the second reflective bump; stacking an upper cladding over the upper side of the carrier to cover the first reflective bump, the second reflective bump, and the core; removing the carrier; and stacking a lower cladding over a lower side of the upper cladding. Forming reflective bumps on a conductive carrier, and polishing the reflective bumps to form inclined surfaces, can reduce lead time and can provide a high degree of freedom in design.
Abstract:
A printed circuit board including a first optical waveguide having a circuit pattern and a pad buried in one side thereof, a first insulation layer stacked over one side of the first optical waveguide, a first insulating material stacked over the first insulation layer, a first electrical wiring layer stacked over the first insulating material, a second optical waveguide having a circuit pattern and a pad buried in one side thereof, a second insulation layer stacked over one side of the second optical waveguide, a second insulating material stacked over the second insulation layer, a second electrical wiring layer stacked over the second insulating material, an intermediate layer interposed between the other side of the first optical waveguide and the other side of the second optical waveguide such that the first optical waveguide and the second optical waveguide are attached, and a via penetrating the first optical waveguide and the second optical waveguide.
Abstract:
A method of manufacturing an optical waveguide is disclosed. The method in accordance with an embodiment of the present invention includes providing a carrier, fixing a base substrate to the carrier by using a first insulation layer such that the base substrate is directly stacked on the carrier, stacking an optical waveguide layer on at least one of the base substrate and the first insulation layer, and severing the base substrate such that the base substrate and the optical waveguide layer are separated from the carrier. Accordingly, the optical waveguide layer can be formed with a uniform thickness since wrinkles in the base substrate supporting the optical waveguide layer are prevented from forming during the manufacturing process.
Abstract:
An optical wiring board and a manufacturing method thereof are disclosed. In accordance with an embodiment of the present invention, the method includes providing a base substrate having an optical waveguide layer with a mirror groove formed on one surface thereof and a first insulation layer stacked on one surface of the optical waveguide layer and having a through-hole connected with the mirror groove formed thereon, forming a metal mirror layer connected from the mirror groove to an inner wall of the through-hole and forming an electrode pad on a side of the other surface of the optical waveguide layer, in which the electrode pad is disposed in accordance with the position of the metal mirror layer.
Abstract:
The present invention relates to a printed circuit board for optical waveguides and a method of manufacturing the same. The present invention provides a printed circuit board for optical waveguides includes: a base substrate; an optical waveguide that is formed on an upper middle of the base substrate and includes a lower clad, a core formed on an upper middle of the lower clad, and an upper clad formed on the lower clad to surround an upper surface and a side surface of the core; and a side substrate that is formed on the base substrate and has a through hole, through which the optical waveguide penetrates, provided at the middle thereof and a circuit pattern formed therein and a method of manufacturing a printed circuit board for optical waveguides.
Abstract:
A printed circuit board and a method of manufacturing the printed circuit board are disclosed. The printed circuit board can include: an optical waveguide, in one side of which a circuit pattern and a pad are buried; an insulation layer stacked over one side of the optical waveguide; a first insulating material stacked over the insulation layer; a first electrical wiring layer stacked over the first insulating material; a second insulating material stacked over the other side of the optical waveguide; a second electrical wiring layer stacked over the second insulating material; and a via penetrating the optical waveguide. Certain embodiments of the invention enable the efficient transmission of optical and electrical signals, reduce loss in the optical signals transferred to the photoelectric converters, and allow more efficient designs for the wiring in the board.
Abstract:
A printed circuit board is disclosed. A printed circuit board, which includes a first board part, a flexible board part which has one side coupled with the first board part and which includes an electrical wiring layer and an optical waveguide to transmit both electrical signals and optical signals, and a second board part coupled with the other side of the flexible board part, where the electrical wiring layer and the optical waveguide are disposed with a gap in-between, can provide greater bendability and reliability, by having the optical waveguide and electrical wiring layer separated with a gap in-between at the flexible portion of the board, and the optical waveguide can be manufactured with greater precision for even higher reliability, by having the optical waveguide manufactured separately and then inserted during the manufacturing process of the board.