Abstract:
A seal mechanism with improved pressure tightness is provided to eliminate a return piping to a fuel tank used for reducing pressure applied to the seal mechanism in a high pressure fuel pump. The seal mechanism includes a stress reduction mechanism for reducing the stress generated at the junction between its retaining member and flexible member.
Abstract:
In a fuel pump pressurizing fuel and supplying the fuel to a fuel injection valve of a vehicle engine, a hardened layer of at least one selected from a nitride layer, a carburated and quenched layer and a carbonitrided layer, and a metal compound layer, on a surface of the hardened layer, higher in corrosion resistance than the hardened layer are formed on one of slide surfaces contacting each other and sliding in fuel.
Abstract:
A motion converting mechanism for converting the rotating motion to the inclined gyration movement in a fuel pump is isolated from gasoline through a flexible isolating member. The lubrication of a load supporting portion in the fuel pump, which is enclosed in an interior portion of the flexible isolating member, can be performed. A sealing portion of a rotating shaft in the fuel pump is isolated from the gasoline by the flexible isolating member. The lubricating oil is sealed in an interior portion of an isolating area formed by the flexible isolating member.
Abstract:
In order to provide a welded structure of and welding method for two metallic parts fitted together at a tubular section in a high-pressure fuel supply pump, an electric current is supplied to any of the welding connection surfaces formed between a pump housing and cylinder in a high-pressure fuel supply pump, between the pump housing and an installation flange, between the pump housing and an intake or discharge joint, between the pump housing and a pulsation-absorbing damper cover, between the pump housing and a relief valve mechanism, and between the pump housing and an electromagnetically driven intake valve mechanism. The two sections are pressed against each other to generate, along the connection surface, a plastic flow not causing melting or fusion due to heat, and form a diffusion-weld region at the connection surface by using the plastic flow and the application of the pressure.
Abstract:
An object of the present invention is to reduce the pressure loss in a relief valve employed for a high-pressure liquid supply pump. Disclosed is a high-pressure liquid supply pump for pressurizing a liquid and supplying the pressurized liquid from a low-pressure side to a high-pressure side. The pump includes a relief path which releases the pressurized liquid from the high-pressure side to the low-pressure side, and a relief valve which is positioned in the relief path and equipped with an intermediate chamber, a valve seat positioned toward the high-pressure side of the intermediate chamber, a ball valve that is attachable to and detachable from the valve seat, and a ball valve retainer for pressing the ball valve against the valve seat. The relief path is configured so that an inflow path to the intermediate chamber and an outflow path from the intermediate chamber both produce a restriction effect. The ball valve retainer has a pressure reception surface for receiving the pressure from the intermediate chamber. A first pressure reception area, which detaches the ball valve from the valve seat upon receipt of liquid pressure of the pressurized liquid from a high-pressure section when the relief valve closes, is smaller than a second pressure reception area, which lifts the ball valve and the ball valve retainer upon receipt of liquid pressure from the intermediate chamber.
Abstract:
An object of this invention is to provide such a welded structure of and welding method for two metallic parts fitted together at a tubular section in a high-pressure fuel supply pump, that enables rapid joining of both metallic parts by staking (press-fitting included), screw fastening, and/or laser welding, offers high welding strength and sufficient fluid sealability, and keeps the metallic materials free from thermal changes in composition. Solution: While an electric current is supplied to any one of the welding connection surfaces formed between a pump housing and cylinder in a high-pressure fuel supply pump, between the pump housing and an installation flange, between the pump housing and an intake or discharge joint, between the pump housing and a pulsation-absorbing damper cover, between the pump housing and a relief valve mechanism, and between the pump housing and an electromagnetically driven intake valve mechanism, the particular two sections are pressed against each other to generate, along the connection surface, a plastic flow not causing melting or fusion due to heat, and form a diffusion-weld region at the connection surface by using the plastic flow and the application of the pressure.
Abstract:
A fluid pressure pulsation damper mechanism comprising: a metal damper having two metal diaphragms joined together with a hermetic seal for forming a sealed spacing filled with a gas between the two metal diaphragms, an edge part at which are overlapped along outer peripheries thereof; a main body having a damper housing in which the metal damper is accommodated; and a cover attached to the main body to cover the damper housing and isolate the damper housing from an outside air, the metal damper being held between the cover and the main body; wherein the cover is further comprising: a metal plate for making the cover, a peripheral edge of the cover being joined to the main body, a plurality of inner convex curved parts extending toward the main body and a plurality of outer convex curved parts extending in a direction away from the main body, and a plurality of the inner convex curved parts and a plurality of the outer convex parts being disposed alternately inside the peripheral edge of the cover at which the cover is joined to the main body; wherein the cover is attached to the main body, ends of the plurality of inner convex curved parts touch one side of the edge part of the metal damper, which are outwardly formed in radial directions of a part including the sealed spacing in the metal damper; and the metal damper is held between the cover and a metal damper holding part of a holding member placed on the main body.
Abstract:
Disclosed herein is a fuel pump for an inter-cylinder direct fuel injection apparatus, in which occurrence of corrosion and attrition caused by cavitation or erosion can be suppressed, their resistance against the environment can be improved, and an excellent lifetime can be achieved in the case of the use of an aluminum material even if the temperature reaches as high as 100° C. or higher and the pressure reaches as high as 7 to 12 MPa. In the fuel pump for an inter-cylinder direct fuel injection apparatus, made of aluminum or an aluminum alloy, a coating film plated with Ni—P or a Ni—P based material is formed by electroless plating.
Abstract:
An axial plunger pump includes a shaft having a swash plate effecting swing motion and transmitting driving force from the outside, plungers reciprocate by the swing motion of the swash plate. A cylinder block has cylinders formed so as to open on the side of the swash plate, with the plungers inserted therein. Passages in the block supply refuel to the cylinders. A body combined with the cylinder block encloses the swash plate. Sealing members are arranged between the plungers and the cylinders on the swash plate side of the passages formed in the cylinder block for sealing gaps between the plungers and the cylinders, respectively.
Abstract:
A drive part for converting rotational movement in a fuel pump to the wobble movement includes the shaft for transmitting an outside drive force, the swash plate rotated by the shaft and the wobble plate for converting the rotational movement of the swash plate to the wobble movement. Plural pistons are reciprocated in response to the wobble movement of the wobble plate. The crank room containing the swash plate, the wobble plate and the piston are separated into the fuel room and the drive room by bellows. The bearings for transmitting the drive force between the shaft in the drive room and the swash plate, and the bearing for transmitting the drive force between the swash plate and the wobble plate are placed inside the drive room in order to lubricate the bearings. By arranging plural pistons inside the fuel room, the fuel is forced to be taken in and discharged by the reciprocating movement of the individual pistons.