摘要:
A SiC device includes: a substrate; a drift layer; a base region; a source region; a channel layer connecting the drift layer and the source region; a gate oxide film on the channel layer and the source region; a gate electrode on the gate oxide film; an interlayer insulation film with a contact hole having a barrier layer and a BPSG insulation film on the gate electrode; a source electrode having upper and lower wiring electrodes on the interlayer insulation film and in the contact hole for connecting the base region and the source region; and a drain electrode on the substrate. The barrier layer prevents a Ni component in the lower wiring electrode from being diffused into the BPSG insulation film.
摘要:
A semiconductor memory device includes a static memory cell having six MOS transistors arranged on a substrate. The six MOS transistors include first and second NMOS access transistors, third and fourth NMOS driver transistors, and first and second PMOS load transistors. Each of the first and second NMOS access transistors has a first diffusion layer, a pillar-shaped semiconductor layer, and a second diffusion layer arranged vertically on the substrate in a hierarchical manner. Each of the third and fourth NMOS driver transistors has a third diffusion layer, a pillar-shaped semiconductor layer, and a fourth diffusion layer arranged vertically on the substrate in a hierarchical manner. The lengths between the upper ends of the third diffusion layers and the lower ends of the fourth diffusion layers are shorter than the lengths between the upper ends of the first diffusion layer and the lower ends of the second diffusion layers.
摘要:
Disclosed is a semiconductor device production method, which comprises the steps of: forming a pillar-shaped first-conductive-type semiconductor layer on a planar semiconductor layer; forming a second-conductive-type semiconductor layer in a portion of the planar semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; forming a gate dielectric film and a gate electrode having a laminated structure of a metal film and an amorphous silicon or polysilicon film, around the pillar-shaped first-conductive-type semiconductor layer; forming a sidewall-shaped dielectric film on an upper region of a sidewall of the pillar-shaped first-conductive-type semiconductor layer and in contact with a top of the gate electrode; forming first and second sidewall-shaped dielectric films on a sidewall of the gate electrode; forming a second-conductive-type semiconductor layer in an upper portion of the pillar-shaped first-conductive-type semiconductor layer; forming a metal-semiconductor compound on the second-conductive-type semiconductor layer formed in the portion of the planar semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; forming a metal-semiconductor compound on the second-conductive-type semiconductor layer formed in the upper portion of the pillar-shaped first-conductive-type semiconductor layer; forming a metal-semiconductor compound on the gate electrode; forming a contact on the second-conductive-type semiconductor layer formed in the portion of the planar semiconductor layer underneath the pillar-shaped first-conductive-type semiconductor layer; and forming a contact on the second-conductive-type semiconductor layer formed in the upper portion of the pillar-shaped first-conductive-type semiconductor layer.
摘要:
There is provided a high-integrated complementary metal-oxide semiconductor static random-access memory including an inverter. The inverter includes: a first pillar that is formed by integrating a first-conductivity-type semiconductor, a second-conductivity-type semiconductor, and an insulating material disposed between the first-conductivity-type semiconductor and the second-conductivity-type semiconductor, and that vertically extends with respect to a substrate; a first second-conductivity-type high-concentration semiconductor disposed on the first-conductivity-type semiconductor; a second second-conductivity-type high-concentration semiconductor disposed under the first-conductivity-type semiconductor; a first first-conductivity-type high-concentration semiconductor disposed on the second-conductivity-type semiconductor; a second first-conductivity-type high-concentration semiconductor disposed under the second-conductivity-type semiconductor; a gate insulating material formed around the first pillar; and a gate conductive material formed around the gate insulating material.
摘要:
A solid-state image pickup element comprises a first-conductive type planar semiconductor layer formed on a second-conductive type planar semiconductor layer, a hole portion formed in the first-conductive type planar semiconductor layer to define a hole therein, and a first-conductive type high-concentration impurity region formed in a bottom wall of the hole portion. The solid-state image pickup element also includes a first-conductive type high-concentration impurity-doped element isolation region, a second-conductive type photoelectric conversion region, a transfer electrode formed on the sidewall of the hole portion through a gate dielectric film, a second-conductive type CCD channel region, and a read channel formed in a region of the first-conductive type planar semiconductor layer sandwiched between the second-conductive type photoelectric conversion region and the second-conductive type CCD channel region.
摘要:
A method of producing a solid-state image pickup element includes forming a hole portion, forming a first-conductive type high-concentration impurity region in a bottom wall of the hole portion, and forming a first-conductive type high-concentration impurity-doped element isolation region in a part of a sidewall of the hole portion and connected to the first-conductive type high-concentration impurity region. The method also includes forming a second-conductive type photoelectric conversion region beneath the first-conductive type high-concentration impurity region and adapted to undergo a change in charge amount upon receiving light, and forming a transfer electrode formed on the sidewall of the hole portion through a gate dielectric film. The method further includes forming a second-conductive type CCD channel region in a top surface of the first-conductive type planar semiconductor layer, and forming a read channel sandwiched between the second-conductive type photoelectric conversion region and the second-conductive type CCD channel region.
摘要:
A method of manufacturing a semiconductor device includes the steps of forming a first columnar semiconductor layer on a substrate forming a first flat semiconductor layer forming a first semiconductor layer of a second conductive type, and forming a first insulating film. The method further includes the steps of forming a gate insulating film and a gate electrode, forming a second semiconductor layer of the second conductive type, forming a semiconductor layer of a first conductive type and forming a metal-semiconductor compound. The first insulating film has a thickness larger than that of the gate insulating film formed around the first columnar silicon layer.
摘要:
It is intended to provide a solid-state image pickup element capable of reducing an area of a read channel to increase a ratio of a surface area of a light-receiving section to the overall surface area of one pixel. The solid-state image pickup element comprises a first-conductive type planar semiconductor layer formed on a second-conductive type planar semiconductor layer, a hole portion formed in the first-conductive type planar semiconductor layer to define a hole therein, a first-conductive type high-concentration impurity region formed in a bottom wall of the hole portion, a first-conductive type high-concentration impurity-doped element isolation region formed in a part of a sidewall of the hole portion and connected to the first-conductive type high-concentration impurity region, a second-conductive type photoelectric conversion region formed beneath the first-conductive type high-concentration impurity region and in a part of a lower region of the remaining part of the sidewall of the hole portion, and adapted to undergo a change in charge amount upon receiving light, a transfer electrode formed on the sidewall of the hole portion through a gate dielectric film, a second-conductive type CCD channel region formed in a top surface of the first-conductive type planar semiconductor layer and in a part of an upper region of the remaining part of the sidewall of the hole portion, and a read channel formed in a region of the first-conductive type planar semiconductor layer sandwiched between the second-conductive type photoelectric conversion region and the second-conductive type CCD channel region.
摘要:
It is an object to provide a CCD solid-state image sensor, in which an area of a read channel is reduced and a rate of a surface area of a light receiving portion (photodiode) to an area of one pixel is increased. There is provided a solid-state image sensor, including: a first conductive type semiconductor layer; a first conductive type pillar-shaped semiconductor layer formed on the first conductive type semiconductor layer; a second conductive type photoelectric conversion region formed on the top of the first conductive type pillar-shaped semiconductor layer, an electric charge amount of the photoelectric conversion region being changed by light; and a high-concentrated impurity region of the first conductive type formed on a surface of the second conductive type photoelectric conversion region, the impurity region being spaced apart from a top end of the first conductive type pillar-shaped semiconductor layer by a predetermined distance, wherein a transfer electrode is formed on the side of the first conductive type pillar-shaped semiconductor layer via a gate insulating film, a second conductive type CCD channel region is formed below the transfer electrode, and a read channel is formed in a region between the second conductive type photoelectric conversion region and the second conductive type CCD channel region.