Abstract:
Shaped abrasive particles each having a sloping sidewall. Each of the shaped abrasive particles containing alpha alumina and having a first face and a second face separated by a thickness, t. The shaped abrasive particles further having a draft angle α between the second face and the sloping sidewall, and the draft angle α is between about 95 degrees to about 125 degrees.
Abstract:
Shaped abrasive particles each having a sloping sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a thickness, t. The shaped abrasive particles further comprising either: a draft angle α between the second face and the sloping sidewall, and the draft angle α is between about 95 degrees to about 130 degrees, or the sloping sidewall having a radius, R, between the first face and the second face and the radius, R, is between about 0.5 to about 2 times the thickness, t.
Abstract:
Abrasive particles comprising shaped abrasive particles each having a sidewall, each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a sidewall and having a maximum thickness, T; and the shaped abrasive particles further comprising a plurality of grooves on the second face.
Abstract:
Precursor alpha alumina abrasive particles in a mold are subjected to a drying process that cracks or fractures at least a majority of the precursor abrasive particles into at least two pieces thereby producing abrasive shards having a smaller size than the mold cavity from which they were made. The smaller abrasive shards, once formed, could be reassembled like jigsaw puzzle pieces to reproduce the original cavity shape of the mold from which they were made. The cracking or fracturing of the precursor abrasive particles is believed to occur by ensuring that the surface tension of the abrasive dispersion to the walls of the mold is greater than the internal attractive forces of the abrasive dispersion as the abrasive dispersion is dried within the mold cavity.
Abstract:
A method for making an abrasive article having at least two abrasive coatings having different abrasive natures. The abrasive natures can differ, for example, by abrasive particle size, abrasive particle type, abrasive particle shape, filler, surfactant, or coupling agent. In another embodiment, the abrasive article can be a structured abrasive article comprising abrasive composites. In another aspect of the invention, the article can have a coating having a single abrasive nature, where the composites comprising the coating are free of abrasive particles.
Abstract:
Precursor alpha alumina abrasive particles in a mold are subjected to a drying process that cracks or fractures at least a majority of the precursor abrasive particles into at least two pieces thereby producing abrasive shards having a smaller size than the mold cavity from which they were made. The smaller abrasive shards, once formed, could be reassembled like jigsaw puzzle pieces to reproduce the original cavity shape of the mold from which they were made. The cracking or fracturing of the precursor abrasive particles is believed to occur by ensuring that the surface tension of the abrasive dispersion to the walls of the mold is greater than the internal attractive forces of the abrasive dispersion as the abrasive dispersion is dried within the mold cavity.
Abstract:
An abrasive comprising shaped abrasive particles each with an opening. The shaped abrasive particles are formed from alpha alumina and have a first face and a second face separated by a thickness t. The opening in each of the shaped abrasive particles can improve grinding performance by reducing the size of a resulting wear flat, can provide a reservoir for grinding aid, and can improve adhesion to a backing in a coated abrasive article.
Abstract:
Abrasive particles comprising dish-shaped abrasive particles each having a sidewall; each of the shaped abrasive particles comprising alpha alumina and having a first face and a second face separated by a thickness, t; and wherein either the first face or the second face is recessed or concave.
Abstract:
An abrasive article having a sheet-like structure having at least one major surface having deployed thereon a plurality of individual abrasive composites, each abrasive composite comprising a plasticizer and a plurality of abrasive particles dispersed in a binder, wherein said binder is formed by polymerizing a binder precursor and said plasticizer being combined with said binder precursor prior to said polymerizing in an amount of 30 to 70 parts plasticizer per 100 parts by weight of the combined binder precursor and plasticizer. There is also a method of using such as abrasive article to reduce the surface finish of a workpiece and a process of making the abrasive article.
Abstract:
An abrasive article having a sheet-like structure having a major surface and having deployed in a fixed position thereon a plurality of abutting abrasive composites in an area spacing of at least 1,200 composites/cm.sup.2, each of the composites comprising a plurality of abrasive particles dispersed in a binder. The invention also relates to a method for reducing a surface finish of a workpiece surface using the abrasive article and a process for making the abrasive article of the invention.
Abstract translation:一种磨料制品,其具有主要表面的片状结构,并且在固定位置上展开了至少1,200个复合材料/ cm 2的区域间隔的多个邻接的磨料复合材料,每个复合材料包括分散的多个磨料颗粒 在粘合剂中。 本发明还涉及一种使用磨料制品降低工件表面的表面光洁度的方法和用于制造本发明的磨料制品的方法。