Abstract:
The present invention relates to thermally conductive, elastomeric pads and methods for manufacturing such pads. The methods involve injection-molding a thermally conductive composition comprising about 30 to 60% by volume of an elastomer polymer matrix and about 25 to 60% by volume of a thermally conductive filler material. The resultant pads have heat transfer properties and can be used as a thermal interface to protect heat-generating electronic devices.
Abstract:
An electronic connector having a housing containing a circuit board with a heat-generating component, such as a photodiode or laser, is provided. The housing is molded over the circuit board and heat-generating component. The housing is made from a moldable, thermally conductive polymer composition containing a base polymer and thermally conductive filler material. Liquid crystal polymers can be used as the base polymer, and boron nitride particles and carbon fibers can be used as the thermally conductive filler materials. In one embodiment, the thermally conductive polymer composition includes 30 to 60% of a base polymer, 25% to 50% of a first thermally conductive filler material, and 10 to 25% of a second thermally conductive filler material. The molded housing is capable of dissipating heat from the heat-generating component. A method for making the electronic connector is also provided.
Abstract:
A highly thermally conductive and high strength net-shape moldable molding composition, with a thermal conductivity above 4 W/m° K and a strength of at least 15 ksi includes a polymer base matrix of, by volume, between 30 and 70 percent. A first highly thermally conductive filler of high modulus PITCH-based carbon, by volume, between 15 and 47 percent is provided in the composition that has a relatively high aspect ratio of at least 10:1. Also in the composition mixture is a second high strength filler of PAN-based carbon, by volume, between 10 and 35 percent that has a relatively high aspect ratio of 10:1 or more. Optionally, a third filler material of thermally conductive material with a relatively low aspect ratio of 5:1 or less may be included in the composition, by volume less than 10 percent, to improve the thermal conductivity and strength of the composition.
Abstract:
A highly thermally conductive and high strength net-shape moldable molding composition, with a thermal conductivity above 4 W/m° K and a strength of at least 15 ksi includes a polymer base matrix of, by volume, between 30 and 70 percent. A first highly thermally conductive filler of high modulus PITCH-based carbon, by volume, between 15 and 47 percent is provided in the composition that has a relatively high aspect ratio of at least 10:1. Also in the composition mixture is a second high strength filler of PAN-based carbon, by volume, between 10 and 35 percent that has a relatively high aspect ratio of 10:1 or more. Optionally, a third filler material of thermally conductive material with a relatively low aspect ratio of 5:1 or less may be included in the composition, by volume less than 10 percent, to improve the thermal conductivity and strength of the composition.
Abstract:
The present invention discloses a method of constructing a heat pipe that includes providing a heat pipe with phase change media therein and injection overmolding the heat pipe with a conductive composition. The thermally conductive composition absorbs or reflects electro magnetic interference waves and prevents their transmission into and through the heat pipe to the electronic components being cooled by the heat pipe.
Abstract:
A backcountry ski binding having a boot-receiving frame (10) and a climbing attachment (40) is detachably mountable (24, 26) upon a ski and convertible between a plurality of climbing modes (L) and a stored mode (C). The frame includes adjustable rear support means (28) that permit free heel operation at a plurality of boot positions to accommodate slopes of differing grade. The climbing attachment is pivotal about a main mounting pin and has an articulated plate (42) and arm (44) so that a climbing scoop (46) can be moved between not only the plurality of different climbing positions, but also between those positions and the stored position. Locking means (56, 58) are included to releasably and selectively lock the scoop in these positions.
Abstract:
A pressure pulsation dampener for use in connection with positive displacement reciprocating piston pumps comprising a spherical pressure vessel having opposed inlet and outlet ports arranged along a diametral line of the vessel sphere and having a generally cylindrical flexible tubular member forming part of a replaceable cartridge disposed within the interior chamber of the spherical pressure vessel. The liquid volume capacity of the spherical pressure vessel is sufficient to reduce to the flow velocity of the liquid entering the vessel by approximately 85%. A flexible elastomeric tubular member is provided with encapsulated longitudinally extending reinforcing cords which are of a generally curved shaped and of a length longer than the length of the flexible member. Upon inflation of the flexible member the cords ultimately come under tension to limit the expansion or distention of the flexible member and to absorb the stress imposed on the flexible member under the maximum distended condition. The flexible member is effective to dampen flow induced pressure pulsations over a wide range of nominal working pressures.
Abstract:
Provided are techniques for presenting a data visualization on an off-line mobile device. A report specification is parsed to detect a drill definition to navigate from a report viewer to an interactive visualizer. Data package report specifications are generated to create data and metadata. Data package report output is obtained for each of the data package report specifications. Data and metadata in each data package report output are converted. The converted data and metadata are stored into a data package. A mobile content package is created using the data package and a visualization specification. A report and the mobile content package are delivered to the off-line mobile device. The report viewer is used to present the report. In response to a user interacting with a user interface control on the presented report, the interactive visualizer is launched to present the data visualization using the mobile content package.