Abstract:
A PPG system for determining a stroke volume of a patient includes a PPG sensor configured to be secured to an anatomical portion of the patient. The PPG sensor is configured to sense a physiological characteristic of the patient. The PPG system may include a monitor operatively connected to the PPG sensor. The monitor receives a PPG signal from the PPG sensor. The monitor includes a pulse trending module determining a slope transit time of an upslope of a primary peak of the PPG signal. The pulse trending module determines a stroke volume of the patient as a function of the slope transit time.
Abstract:
A system is configured to determine cardiac output of a patient. The system may include a first sub-system configured to detect a first physiological signal, and a second sub-system configured to detect a second physiological signal that differs from the first physiological signal. The first and second sub-systems may be separate and distinct from one another. The system may also include a cardiac output determination module that is configured to determine the cardiac output based, at least in part, on the first and second physiological signals.
Abstract:
A system is configured to determine a fluid responsiveness index of a patient from a physiological signal. The system may include a sensor configured to be secured to an anatomical portion of the patient, and a monitor operatively connected to the sensor. The sensor is configured to sense a physiological characteristic of the patient. The monitor is configured to receive a physiological signal from the sensor. The monitor may include an index-determining module configured to determine the fluid responsiveness index through formation of a ratio of one or both of amplitude or frequency modulation of the physiological signal to baseline modulation of the physiological signal.
Abstract:
Equipment and systems for protecting electronics against damage or upsets from electromagnetic pulse (HEMP or EMP), intentional electromagnetic interference (IEMI), and high power RF weapons are disclosed. This equipment can include a shielding arrangement includes a metallic enclosure having an interior volume defining a protected portion and an unprotected portion separated by an electromagnetically shielding barrier, and having a portal providing access to the protective portion and including an access opening, a shielding cover sized to cover the access opening, and an electromagnetically sealing gasket positioned around a perimeter of the access opening. The shielding arrangement also includes one or more filters positioned at least partially within the unprotected portion and along the electromagnetically shielding barrier to dampen electromagnetic signals and/or power signals outside a predetermined acceptable range. In some cases, waveguides beyond cutoff are included, to provide passage of optical signals or airflow through the enclosure.
Abstract:
In some embodiments, systems and methods for identifying a low perfusion condition are provided by transforming a signal using a wavelet transform to generate a scalogram. A pulse band and adjacent marker regions in the scalogram are identified. Characteristics of the marker regions are used to detect the existence of a lower perfusion condition. If such a condition is detected, an event may be triggered, such as an alert or notification.
Abstract:
A physiological measurement system is disclosed which can take a pulse oximetry signal such as a photoplethysmogram from a patient and then analyse the signal to measure physiological parameters including respiration, pulse, oxygen saturation and movement. The system comprises a pulse oximeter which includes a light emitting device and a photodetector attachable to a subject to obtain a pulse oximetry signal; analogue to digital converter means arranged to convert said pulse oximetry signal into a digital pulse oximetry signal; signal processing means suitable to receive said digital pulse oximetry signal and arranged to decompose that signal by wavelet transform means; feature extraction means arranged to derive physiological information from the decomposed signal; an analyser component arranged to collect information from the feature extraction means; and data output means arranged in communication with the analyser component.
Abstract:
Methods and systems are disclosed for wireless communication, and in particular using a coaxial antenna for distributed wireless transmission. In one example, a wireless transmitter is disclosed that includes a radio frequency signal source and a coaxial cable including a near end and a far end. The near end is electrically connected to the radio frequency signal source and configured to receive signals from the radio frequency signal source. The coaxial cable has an inner conductor and an outer conductor. The wireless transmitter includes a shorting connection at the far end of the coaxial cable, the shorting connection electrically connecting the inner conductor and the outer conductor, and a plurality of openings along the coaxial cable spaced at predetermined locations to output signals generated by the radio frequency signal source. The invention can be used for RF attenuation monitoring and/or testing applications.
Abstract:
A method and apparatus is provided for monitoring operations of a specified transaction server that has an associated network topology. One embodiment comprises the steps of defining a plurality of zones within the network topology, and assigning one or more monitoring agents to each of the zones, wherein each agent is adapted to selectively run synthetic transactions with the specified server. The method further comprises monitoring results of successive synthetic transactions carried out by the agents, in order to detect any errors associated with the successive transactions. In response to detecting a performance or an availability problem, selectively, that is associated with a particular synthetic transaction run by a particular one of the agents, one or more agents is dynamically scheduled to run synthetic transactions, wherein each scheduled transaction has a specified relationship with the particular transaction.
Abstract:
According to embodiments, systems and methods are provided that use continuous wavelet transforms and basis functions to provide an optimized system for the determination of physiological information. In an embodiment, the basis functions may be used to refine an area of interest in the signal in frequency or in time, and the continuous wavelet transform may be used to identify a maxima ridge in the scalogram at scales with characteristic frequencies proximal to the frequency or frequencies of interest. In another embodiment, a wavelet transform may be used to identify regions of a signal with the morphology of interest while basis functions may be used to focus on these regions to determine or filter information of interest. In yet another embodiment, basis functions and continuous wavelet transforms may be used concurrently and their results combined to form optimized information or a confidence metric for determined physiological information.