Abstract:
In a method of driving a display apparatus, a first combination of a first anode voltage and a first element voltage is selected to apply the first anode voltage to the anode electrode and apply the first element voltages to electron emitting elements selectively, during a first period. The first combination is changed to a second combination of a second anode voltage and a second element voltage after the first period to apply the second anode voltage to the anode electrode and apply the second element voltages to the electron emitting elements selectively, during a second period. After the second period, the second combination is also change to the first combination.
Abstract:
A fluorescent substance is provided, with includes a matrix composed of a compound having an AlN polytypoid structure represented by the following general formula (1), and a luminescence center element: (Al, M)a(N, X)b (1) wherein, M is at least one metal excluding Al, X is at least one non-metal excluding N, and a and b are positive values.
Abstract:
In the method, apparatus and the substance produced thereby: a plasma flame 1 is produced by a plasma torch 11; the plasma flame 1 is passed through a plasma flame furnace 21 which controls the heat of the plasma flame 1; then, the plasma flame 1 is injected into a reactor column 31 to heat the substance. The substance may be a particle. The plasma flame 1 has a wide flame area in which a temperature of flame is uniform.
Abstract:
In the method, apparatus and the substance produced thereby: a plasma flame 1 is produced by a plasma torch 11; the plasma flame 1 is passed through a plasma flame furnace 21 which controls the heat of the plasma flame 1; then, the plasma flame 1 is injected into a reactor column 31 to heat the substance. The substance may be a particle. The plasma flame 1 has a wide flame area in which a temperature of flame is uniform.
Abstract:
According to one embodiment, the luminescent material emits light having an luminescence peak within a wavelength range of 550 to 590 nm when excited with light having an emission peak in a wavelength range of 250 to 520 nm. The luminescent material has a composition represented by the following formula 1. (Sr1-xEux)aSibAlOcNd formula 1 wherein x, a, b, c and d satisfy following condition: 0
Abstract:
A light emitting device includes a board and a light emitting element mounted on the board, emitting light having a wavelength of 250 nm to 500 nm. A red fluorescent layer is formed on the element and includes a red phosphor (M1−x1Eux1)aSibAlOcNd having a semicircular shape with a radius r, where M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Aluminum, rare-earth elements, and IVB group elements. An intermediate layer is formed on the red fluorescent layer, being made of transparent resin, having a semicircular shape with a radius D; and a green fluorescent layer is formed on the intermediate layer, including a green phosphor, having a semicircular shape. A relationship between the radius r and the radius D is 2.0r(μm)≦D≦(r+1000)(μm).
Abstract:
A light emitting device according to embodiments has: a substrate; first light emitting units arranged along a first straight line on the substrate; second light emitting units arranged along a second straight line on the substrate, the second straight line being parallel to the first straight line, the second light emitting units having an emission color different from the first light emitting units; and third light emitting units arranged along a third straight line on the substrate, the third straight line being parallel to the first and second straight lines, the third light emitting units having an emission color different from the first and second light emitting units, wherein a distance between light emitting units of a same emission color is longer than a minimum distance between light emitting units of different emission colors.
Abstract:
A fluorescent substance is provided, with includes a matrix composed of a compound having an AlN polytypoid structure represented by the following general formula (1), and a luminescence center element: (Al,M)a(N,X)b (1) wherein, M is at least one metal excluding Al, X is at least one non-metal excluding N, and a and b are positive values.
Abstract:
A luminescent material is provided, which includes a carbide oxynitride-based compound having a composition represented by formula 1: (M1−wRw)uAl1−xSi1+vOzNtCy formula 1 wherein M is at least one metal element excluding Si and Al, and R is a luminescent central element. w, u, x, v, z, t and y satisfy following relationships: 0.001
Abstract:
Disclosed is a phosphor suitable for use in a cathode-ray tube, a fluorescent lamp, a radiation intensifying screen, which comprises transparent spherical particles having an average particle size of 0.5 to 20 .mu.m and a ratio of the major diameter to the minor meter of individual particles in the range of 1.0 to 1.5, and ultrafine particles having a diameter of 0.2 .mu.m less in an amount of 5 wt % or less.