Abstract:
A semiconductor laser array is located beside a solid state laser element, and an optical resonator for excitation light includes a coating highly reflective to an oscillation wavelength of the semiconductor laser array on an end face of the semiconductor laser array, opposite from the solid state laser element and a side of the solid state laser element. The solid state laser element is located inside of the optical resonator, and the solid state laser element is excited optically by the excitation light.
Abstract:
A wavelength conversion laser for generating sum frequency laser beam comprising a laser resonator, a solid-state laser active medium, a second harmonic generation wavelength conversion crystal and a sum frequency generation wavelength conversion crystal, wherein the length of the second harmonic generation wavelength conversion crystal along the optical axis is set to be shorter than that of the sum frequency generation wavelength conversion crystal.
Abstract:
To inexpensively and in a simple configuration provide a solid laser amplifier and a solid laser unit capable of generating a high output and high quality laser beam, the unit includes a solid laser medium 5A containing active solid media; a flow tube 14 or the like allowing a cooling medium 24 for cooling the solid laser medium 5A; and a laser array 12 so controlled in temperature as to emit an excitation light 9 for exciting the solid laser medium 5A, the wavelength of which lies within the absorption spectra of a solid laser medium 5A yet does not coincide with that of the absorption spectrum peak of a solid laser medium 5A.
Abstract:
A laser system wherein, in order that a high-output and high-quality single mode of a cross sectional area larger than the beam diameter determined by the construction of a resonator can be obtained stably, although this has heretofore been impossible, there is used a coupling mirror provided with a partial reflection film and an antireflecting film, a laser beam mode is selected using the partial reflection film, a phase difference between laser beam portions caused by a difference in construction between the partial reflection film and the antireflecting film is compensated using a phase difference compensating apparatus, and there is formed an aperture whose diameter is set to a value of not larger than four times the diameter of the partial reflection film.
Abstract:
A solid-state laser apparatus comprises a plurality of solid-state materials each having an active solid-state medium and arranged in a row with a predetermined space on an optical axis of light incident thereon. An optical rotation material and an angle adjusting instrument for adjusting an angle between the optical rotation material and the optical axis of incident light are disposed in at least a space selected from among the plural spaces. The laser apparatus further comprises a laser optical system for extracting a laser beam emitted by the plural solid-state materials.
Abstract:
In a laser device employing an optical resonator which is constructed of a total reflection mirror and a partial reflection mirror, a total reflection plane having an opening is interposed between the partial reflection mirror and the total reflection mirror, the total reflection plane may be formed of, for example, a dielectric thin film or a metallic totally-reflective thin film produced with a cluster ion beam, and the total reflection plane and the total reflection mirror are arranged so as to establish a resonant state. The total reflection plane is formed on an aperture of the partial reflection mirror. The opening of the total reflection plane may be ring-shaped, or a plurality of openings may be provided. The total reflection plane may be located centrally. In a laser device employing an unstable optical resonator, a beam deriving mirror may be disposed within the optical resonator.
Abstract:
A laser device having an infrared laser medium and an aperture member disposed within a resonator in which the mode symmetry is improved. An optical resonator including a total reflecting mirror and a partial reflecting mirror disposed at opposite ends of a gap between electrodes is arranged parallel to an optical axis and orthogonal to a gas flow direction. An aperture member disposed along the optical axis between the mirrors on the side of the partial reflecting mirror has the form of a ring having an axis coinciding with the optical axis. Plural laser beam detecting elements are disposed on the inner peripheral area of the ring. The angular positions of the mirrors are controlled such that a difference in outputs of the detecting elements is minimized.