Abstract:
This invention relates generally to integrin ligand discovery and to a method of integrin ligand discovery base upon induction of ligand-induced epitopes. Such ligands have the potential to be active agent as anti-inflammatory, anti-angiogenesis and/or anti-thrombotic agents and for the treatment of integrin mediated diseases and/or conditions.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
The present invention provides improved flow cytometry tubes containing ports to allow rapid addition and mixing of reagents with sample during flow cytometry. The present invention further provides rapid mixing cytometry devices and method for their use in rapid reagent mixing during flow cytometry.
Abstract:
The present invention relates generally to molecular assemblies, more particularly to an assay for the detection of G-protein coupled receptor (GPCR) molecular assemblies and bead-based detection of ligand-GPCR complexes and to methods for identifying compounds as agonists, partial agonists or antagonists of the binding of G-protein coupled receptors to G-protein and for use of these compounds in the treatment of conditions or disease states in a mammalian subject or patient, including humans, where G-protein coupled receptor binding to G-protein is implicated.
Abstract:
The invention provides a reagentless assay kit for analyte in a sample comprising a modular affinity assembly including at least one sensor unit comprising a ligand having binding affinity for the analyte (affinity module) operatively associated with a reporter probe (reporter module) responsive to changes in the sensor unit induced by analyte/receptor complex formation by transduction of a characteristic detectable signal. Assays employing the modular assembly are also provided.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
Provided are methods and compositions for reducing superoxide anions such that a prophylactic or therapeutic effect against conditions associated with excess oxidative stress achieved. The compositions and methods provide for reducing inflammation and for enhancing lifespan of eukaryotic organisms. A screen for identifying compounds that can be used in these methods is also provided.
Abstract:
The present invention, provides a flow cytometry apparatus for the detection of particles from a plurality of samples comprising: means for moving a plurality of samples comprising particles from a plurality of respective source wells into a fluid flow stream; means for introducing a separation gas between each of the plurality of samples in the fluid flow stream; and means for selectively analyzing each of the plurality of samples for the particles. The present invention also provides a flow cytometry method employing such an apparatus.
Abstract:
Compounds disclosed which inhibit ABCB1 transporter protein are useful for treating diseases in which ABCB1 transporter protein mediates the disease state, including numerous cancers, including hematopoietic cancers, including various leukemias, especially T-lineage acute lymphoblastic leukemia, as well as cancerous tumors, especially forms which exhibit multiple drug resistance. Pharmaceutical compositions which comprise an inhibitor of ABCB1 transporter protein and at least one additional anticancer agent, optionally in combination with a pharmaceutically acceptable carrier, additive or excipient are another aspect of the present invention. A flow cytometry based, high-throughput screening (HST) assay that quantifies ABCB1 efflux is also disclosed. Methods of identifying inhibitors of ABCB1, ABCG2 and ABCC1 transporter proteins are also disclosed.