Abstract:
An apparatus for detection and quantitation of an electrochemically-detectable analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing the apparatus against the users skin.
Abstract:
An apparatus for detection and quantitation of an electrochemically-detectable analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing the apparatus against the users skin.
Abstract:
An analyte test element for determining the concentration of at least one analyte in a physiological sample fluid having a first and a second surface in a predetermined distance opposite from each other, said both surfaces are provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas with high surface energy create a sample distribution system with at least two detection areas, characterized in that the detection areas of first and second surface are also provided with two corresponding patterns of working and reference electrodes of electrochemical detection means.
Abstract:
A container for moisture sensitive test elements comprising a container body (2, 102, 202), an insert (22, 122, 220) fitting in container body, whereby a cavity (18, 118) is created between outer surface of insert wall (24, 124, 240) and inner surface of container body wall (4, 104, 204), and a lid (50, 150, 250) dimensioned to seal container open end when in a closed position, wherein a desiccant material is contained within the cavity (18, 118) between container body wall and insert wall. Insert wall defines a hollow channel (29, 129, 229) which is dimensioned that at least one test element ex-tents from the insert channel facilitating accessibility to an individual test element for the testing of an analyte of interest. Desiccant material includes an indicator whose colour changes when exposed to moisture indicating to a user whether contents therein, i.e. test elements, have been compromised by environmental factors.
Abstract:
An analyte test element for determining the concentration of at least one analyte in a physiological sample fluid having a first and a second surface in a predetermined distance opposite from each other, said both surfaces are provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas with high surface energy create a sample distribution system with at least two detection areas, characterized in that the detection areas of first and second surface are also provided with two corresponding patterns of working and reference electrodes of electrochemical detection means.
Abstract:
A microfluidic analytical system for monitoring an analyte (such as glucose) in a fluid sample (e.g., blood or ISF) includes an analysis module and an electrical device (for example, a meter or power supply). The analysis module includes an insulating substrate and a microchannel(s) within the insulating substrate's upper surface. The analysis module also includes a conductive contact pad(s) disposed on the upper surface of the insulating substrate and an electrode(s), with the electrode(s) being disposed over the microchannel. In addition, the analysis module includes an electrically conductive trace(s) that electrically connects the electrode to at least one electrically conductive contact pad. The analysis module also has a laminate layer disposed over the electrode, the electrically conductive trace, the microchannel and a portion of the upper surface of the insulating substrate. The electrically conductive contact pad of the analysis module has an accessible exposed surface for electrical connection to the electrical device.
Abstract:
A microfluidic analytical system for monitoring an analyte (for example, glucose) in a liquid sample (e.g., ISF) includes an analysis module with at least one micro-channel for receiving and transporting a liquid sample, at least one analyte sensor for measuring an analyte in the liquid sample and at least one position electrode. The analyte sensor(s) and position electrode(s) are in operative communication with the micro-channel. The microfluidic system also includes a meter configured for measuring an electrical characteristic (such as impedance or resistance) of the position electrode(s). Moreover, the measured electrical characteristic is dependent on the position of the liquid sample in the micro-channel that is in operative communication with the position electrode for which an electrical characteristic is measured.
Abstract:
A device for extracting bodily fluid (such as an ISF sample) includes a penetration member with a channel (e.g., a hollow needle) and a fluid flow regulator (for example, a narrow-bore cylinder) disposed within the channel. The penetration member is configured for penetrating a target site (such as a dermal tissue target site) and subsequently residing within the target site and extracting a bodily fluid sample therefrom. The fluid flow regulator is adapted to control (e.g., reduce or minimize variation in) bodily fluid flow rate through the penetration member. In addition, the presence of the fluid flow regulator in the channel of the penetration member serves to reduce sensor lag by reducing the dead volume of the penetration member. A method for extracting bodily fluid from a target site includes providing the aforementioned device. Next, the target site is penetrated with the penetration member of the device. Subsequently, bodily fluid is extracted from the target site via the penetration member and the fluid flow regulator of the device.