Abstract:
An adjustable seating assembly is disclosed having a base with a first end, a second end opposite the first end, and a length extending from the first end to the second end. A frame assembly has a pair of support legs coupled to the base along the length. A seating-support surface is disposed above the base and coupled to the frame assembly. A chest-support surface is disposed above the base and coupled to the frame assembly and the chest-support surface is orientated at an acute angle with respect to the seating-support surface. The pair of the support legs are selectively translatable along the length of the base in a first direction and a second direction opposite the first direction so as to selectively rotate the chest-support surface and the seating-support surface simultaneously while maintaining the acute angle between the chest-support surface and the seating-support surface during the rotation.
Abstract:
Methods, system and apparatus are provided for reducing power loss in an electric motor drive system that includes an electric machine and an inverter module. A controller determines whether a torque command (Tcmd) is less than a minimum torque threshold (Tmin) that is required to disable the inverter module, and if so, increments a counter and determines whether the torque command (Tcmd) remains less than the minimum torque threshold (Tmin). When the torque command (Tcmd) remains less than the minimum torque threshold (Tmin), the controller checks to determine whether a current count value (n) maintained at the counter is greater than a count threshold (nth), and if so, the controller can generate a disable signal to disable switching within the inverter module.
Abstract:
A throttle control system includes a pressure comparison module and a throttle plate control module. The pressure comparison module determines an inlet pressure upstream from a throttle body and an outlet pressure downstream from the throttle body. The throttle plate control module controls a position of a throttle plate based on the inlet pressure and the outlet pressure.
Abstract:
Disclosed herein is a multilayer low temperature co-fired ceramic (LTCC) structure comprising a multilayer low temperature co-fired ceramic comprising glass-ceramic dielectric layers with screen printed thick film inner conductors on portions of the layers and with thin film outer conductors deposited on the upper and lower outer surfaces of the LTCC. At least a portion of the thin film outer conductors is patterned in the form of lines and the spacings between the lines are less then 50 μm. Also disclosed is a process for making the LTCC structure.
Abstract:
A method includes determining an amount of power currently available from a battery for tractive torque as an amount of power stored in the battery less an amount of power required to power other vehicle components, and less an amount of power required to start the engine. An output torque limit when torque is provided only by the motor and power required to provide the output torque limit are determined based on test data. A maximum output torque is calculated by multiplying the amount of power determined to be currently available for tractive torque by a ratio of the output torque limit to the amount of power required to provide the output torque limit. The current output torque may be reduced at a predetermined rate until within a predetermined range of the lesser of the maximum output torque and the output torque limit if an engine start is requested.
Abstract:
Disclosed herein is a method of welding superalloy articles. A buttered layer is attached to a first article formed from a superalloy. A buttered layer is attached to a second article formed from a superalloy. Residual stresses are relieved between the buttered layer and the superalloy. Matching faying surfaces are established at the buttered layers of the articles. And, the faying surfaces of the articles are welded together to form a welded assembly, wherein after welding, a heat affected zone is within the buttered layers.
Abstract:
A tool is disclosed for evaluating the alignment of the channel of an endoscope. The tool includes a housing with one end thereof being connectable to the endoscope. The other end of the housing includes an eyepiece. A lens system is provided within the housing for imaging the distal end of the endoscope onto a reticle. The position of the image on the reticle allows the axial alignment of the endoscope channel to be evaluated.
Abstract:
A container cleaner includes a body having a fluid inlet, a fluid passage within the body, and a nozzle assembly. The nozzle assembly comprises a spray head, a plunger movable relative to a spray head, and a stopper having an opening to receive a portion of the plunger. The spray head may include a plurality of spray apertures formed in the spray head. The spray apertures are angled to direct fluid to portions of a container placed over the container cleaner.
Abstract:
Disclosed herein is a multilayer low temperature co-fired ceramic (LTCC) structure comprising a multilayer low temperature co-fired ceramic comprising glass-ceramic dielectric layers with screen printed thick film inner conductors on portions of the layers and with thin film outer conductors deposited on the upper and lower outer surfaces of the LTCC. At least a portion of the thin film outer conductors is patterned in the form of lines and the spacings between the lines are less then 50 μm. Also disclosed is a process for making the LTCC structure.
Abstract:
A method for managing a threshold increase in output torque capability in a vehicle includes detecting the threshold increase in output torque capability using a controller, and automatically limiting, via the controller, a rate of change of an actual output torque from a transmission of the vehicle in response to the threshold increase. The actual output torque is provided via a traction motor solely using battery power from an energy storage system. The method may include calculating a difference between the threshold increase and the actual output torque, and limiting the rate of change using a rate that is proportional to the difference. A vehicle includes the ESS, a transmission, and a controller. An output member of the transmission is powered using electrical energy from the ESS. The controller manages an increase in output torque capability as noted above.