Abstract:
A method for controlling driveline stability in a vehicle includes generating an activation signal indicative of a predetermined vehicle maneuver, which may include a hard braking maneuver on a low coefficient of friction surface. A quick automatic shift to a neutral gear state is executed with a rapid dumping or bleeding off of clutch pressure in a designated output clutch of the vehicle. An activated state of an antilock braking system (ABS) may be used as part of the activation signal. The shift to the neutral gear state may occur only when a current transmission operating state is associated with the high level of driveline inertia. A vehicle includes a transmission and a control system configured to execute the above method.
Abstract:
A method for managing a threshold increase in output torque capability in a vehicle includes detecting the threshold increase in output torque capability using a controller, and automatically limiting, via the controller, a rate of change of an actual output torque from a transmission of the vehicle in response to the threshold increase. The actual output torque is provided via a traction motor solely using battery power from an energy storage system. The method may include calculating a difference between the threshold increase and the actual output torque, and limiting the rate of change using a rate that is proportional to the difference. A vehicle includes the ESS, a transmission, and a controller. An output member of the transmission is powered using electrical energy from the ESS. The controller manages an increase in output torque capability as noted above.
Abstract:
A method for operating a powertrain system including a torque machine coupled to a drive wheel of a vehicle includes determining a regenerative braking capacity of the powertrain system. In response to a net operator torque request including a braking torque request, a friction braking torque command to operate a friction brake system and a regenerative braking torque request for the torque machine are coincidentally generated, a torque command is generated for controlling operation of the torque machine in response to the regenerative braking torque request, and the friction braking torque command is adjusted by an amount corresponding to a difference between the braking torque request and the regenerative braking torque request.
Abstract:
Methods and systems are provided for vehicle control during braking for vehicles having a transmission gear movable between at least a drive position and a neutral position. A wheel speed sensor measures a wheel speed of the wheel. A controller is coupled to the wheel speed sensor. The controller calculates a parameter using the wheel speed, and shifts the transmission gear from the drive position to the neutral position if the parameter exceeds a predetermined threshold. The parameter is indicative of a load on a component of the vehicle.
Abstract:
A multi-mode powertrain system employing a power-split configuration to transfer torque to a driveline includes an internal combustion engine fluidly coupled to an exhaust aftertreatment system having a catalytic device. A method for controlling the multi-mode powertrain system includes identifying permitted transition paths between a plurality of engine states. The plurality of engine states includes a default state, a pre-light-off state, a light-off state, and a post-light-off state. A preferred one of the plurality of engine states is selected in response to an output torque request and an operating temperature of the catalytic device. Engine operation is transitioned to the preferred one of the plurality of engine states via the permitted transition paths, and the engine is operated in the preferred one of the plurality of engine states.
Abstract:
Methods and systems are provided for vehicle control during braking for vehicles having a transmission gear movable between at least a drive position and a neutral position. A wheel speed sensor measures a wheel speed of the wheel. A controller is coupled to the wheel speed sensor. The controller calculates a parameter using the wheel speed, and shifts the transmission gear from the drive position to the neutral position if the parameter exceeds a predetermined threshold. The parameter is indicative of a load on a component of the vehicle.
Abstract:
A method for controlling driveline stability in a vehicle includes generating an activation signal indicative of a predetermined vehicle maneuver, which may include a hard braking maneuver on a low coefficient of friction surface. A quick automatic shift to a neutral gear state is executed with a rapid dumping or bleeding off of clutch pressure in a designated output clutch of the vehicle. An activated state of an antilock braking system (ABS) may be used as part of the activation signal. The shift to the neutral gear state may occur only when a current transmission operating state is associated with the high level of driveline inertia. A vehicle includes a transmission and a control system configured to execute the above method.
Abstract:
A multi-mode powertrain system employing a power-split configuration to transfer torque to a driveline includes an internal combustion engine fluidly coupled to an exhaust aftertreatment system having a catalytic device. A method for controlling the multi-mode powertrain system includes identifying permitted transition paths between a plurality of engine states. The plurality of engine states includes a default state, a pre-light-off state, a light-off state, and a post-light-off state. A preferred one of the plurality of engine states is selected in response to an output torque request and an operating temperature of the catalytic device. Engine operation is transitioned to the preferred one of the plurality of engine states via the permitted transition paths, and the engine is operated in the preferred one of the plurality of engine states.
Abstract:
A method for operating a powertrain system including a torque machine coupled to a drive wheel of a vehicle includes determining a regenerative braking capacity of the powertrain system. In response to a net operator torque request including a braking torque request, a friction braking torque command to operate a friction brake system and a regenerative braking torque request for the torque machine are coincidentally generated, a torque command is generated for controlling operation of the torque machine in response to the regenerative braking torque request, and the friction braking torque command is adjusted by an amount corresponding to a difference between the braking torque request and the regenerative braking torque request.
Abstract:
A method for managing a threshold increase in output torque capability in a vehicle includes detecting the threshold increase in output torque capability using a controller, and automatically limiting, via the controller, a rate of change of an actual output torque from a transmission of the vehicle in response to the threshold increase. The actual output torque is provided via a traction motor solely using battery power from an energy storage system. The method may include calculating a difference between the threshold increase and the actual output torque, and limiting the rate of change using a rate that is proportional to the difference. A vehicle includes the ESS, a transmission, and a controller. An output member of the transmission is powered using electrical energy from the ESS. The controller manages an increase in output torque capability as noted above.