Abstract:
The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts. Upon pivoting, the A-frame structures (40) act as lever arms to both lift the platform (14) and tilt the platform (14) with respect to the substrate (12) with at least one degree of freedom. Since the platform (14) lifts up from the surface of the substrate (12), it may be tilted at large angles with respect to the substrate (12).
Abstract:
A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.
Abstract:
A shielded multi-conductor interconnect bus for use in interconnecting MEM devices with control signal sources or the like and a method of fabricating a shielded multi-conductor interconnect bus are disclosed. In one embodiment, a shielded interconnect bus formed on a substrate (20) includes a plurality of electrically conductive lines (42) arranged in sets of one, two or more conductive lines between electrically conductive shield walls (46, 66). The electrically conductive lines (42) are surrounded by layers of dielectric material (30, 50). An electrically conductive shield (78) overlies the electrically conductive lines (42) and electrically conductive shield walls (46, 66).
Abstract:
The present invention is generally directed to a method and assembly for supporting an actuation apparatus (e.g. a movable electrostatic comb) of a microelectromechanical (MEM) system. A suspension assembly of the present invention generally resists actuation forces inherent to electrostatically controlled MEM systems by utilizing an opposingly-directed non-linear tensile force. This can be accomplished by utilizing a suspension assembly of the invention including a longitudinal center beam and a plurality of first and second lateral beams extending out from lateral sides of the center beam. When the center beam of the suspension assembly is drawn in a first direction due to the actuation force(s), either or both of the plurality of first lateral beams and the plurality of second lateral beams are stretched to exert a non-linear tensile force having a force vector component generally oriented in a second direction generally opposite the first direction.
Abstract:
The present invention generally relates to a die perimeter region of a die having a microelectromechanical assembly fabricated thereon. This die perimeter region may be configured to facilitate electrically interconnecting adjacent die on a wafer. Moreover, this die perimeter region may be configured to facilitate separating the die from a wafer.
Abstract:
Self-shadowed microelectromechanical structures such as self-shadowed bond pads, fuses and compliant members and a method of fabricating self-shadowing microelectromechanical structures that anticipate and accommodate blanket metalization process steps are disclosed. In one embodiment, a self-shadowed bond pad (10) configured for shadowing an exposed end (44A) of a shielded interconnect line (44) connected to the bond pad (10) from undesired metalization during a metalization fabrication process step includes electrically connected overlaying first, second and third bond pad areas (42, 72, 92) patterned from respective first, second and third layers (40, 70, 90) of material deposited on a substrate (20). The exposed end (44A) of the interconnect line (44) abuts an edge of the first bond pad area (42). The third bond pad area (92) includes at least one tab portion (94) extending laterally from an edge of the third bond pad area (92) to shadow an area on the substrate (20) including the exposed end (44A) of the interconnect line (44) abutting the edge of the first bond pad area (42).
Abstract:
A microelectromechanical system is disclosed that provides amplified movement without requiring the use of a displacement multiplier. Generally, a lever or the like is interconnected with a substrate on which the system is fabricated at a first location, while a free end of the lever is able to move relative to the substrate, typically at least generally about the first location. One or more actuators are movably interconnected with the substrate, and in turn are interconnected with the lever at a location that is somewhere between the free end and the first location. The lever may be configured to move at least generally away from the substrate upon movement of the actuator in one direction, at least generally toward the substrate upon movement of the actuator in another direction, or in any direction and in any manner. The movement of the “free” end of the lever may be used to perform any function, including lifting/pivoting a mirror away from/relative to the substrate.
Abstract:
A multi-level shielded multi-conductor interconnect bus for use in interconnecting MEM devices with control signal sources and a method of fabricating a multi-level shielded multi-conductor interconnect bus are disclosed. In one embodiment, a multi-level shielded interconnect bus (410A) formed on a substrate (20) includes first and second level electrically conductive lines (42, 92) arranged in sets of one, two or more conductive lines between first and second level electrically conductive shield walls (46, 66, 96). The first and second level electrically conductive lines (42, 92) are surrounded by various layers of dielectric material (30, 50, 80, 100). A first level electrically conductive shield (78) overlies the first level electrically conductive lines (42) and shield walls (46, 66). A second level electrically conductive shield (112) overlies the second level electrically conductive lines (92) and shield walls (96).
Abstract:
The present invention provides a MEM system (10) having a platform (14) that is both elevatable from the substrate (12) on which it is fabricated and tiltable with one, two or more degrees of freedom with respect to the substrate (12). In one embodiment, the MEM system (10) includes the platform (14), a pair of A-frame structures (40), and two pairs of actuators (30) formed on the substrate (12). Ends (46A) of rigid members (46) extending from apexes (40A) of the A-frame structures (40) are attached to the platform (14) by compliant members (48A, 48B). The platform (14) is also attached to the substrate (12) by a compliant member (48C). The A-frame structures (40) are separately pivotable about bases (40B) thereof. Each pair of actuators (30) is coupled through a yoke (32) and displacement multiplier (34) to one of the A-frame structures (40) and is separately operable to effect pivoting of the A-frame structures (40) with respect to the substrate (12) by equal or unequal angular amounts. Upon pivoting, the A-frame structures (40) act as lever arms to both lift the platform (14) and tilt the platform (14) with respect to the substrate (12) with at least one degree of freedom. Since the platform (14) lifts up from the surface of the substrate (12), it may be tilted at large angles with respect to the substrate (12).
Abstract:
The present invention is generally directed to a method and assembly for elevating and supporting a microstructure of a MEM system generally by engaging a positioning system of the MEM system with a first elevator lifter. The MEM system generally includes a first microstructure (such as a mirror) disposed in vertically spaced relation to a substrate. The positioning system generally includes an actuator assembly movably interconnected with the substrate, an elevator pivotally interconnected with the substrate and further interconnected with the microstructure, and a tether interconnecting the actuator assembly and the elevator. The first elevator lifter is provided to engage the elevator to lift/elevate the microstructure away from the substrate generally after fabrication of the MEM system and prior to utilizing the microstructure in operation of the MEM system.