摘要:
An object of the present invention is to provide a cold-cathode electron source successfully achieving a high frequency and a high output, a microwave tube using it, and a production method thereof. In a cold-cathode electron source according to the present invention, emitters have a tip portion tapered at an aspect ratio R of not less than 4, and thus the capacitance between the emitters and a gate electrode is decreased by a degree of declination from the gate electrode. For this reason, the cold-cathode electron source is able to support an operation at a high frequency. A cathode material of the cold-cathode electron source is none of the conventional cathode materials such as tungsten and silicon, but is a diamond with a high melting point and a high thermal conductivity. For this reason, the emitters are unlikely to melt even at a high current density of an electric current flowing in the emitters, and thus the cold-cathode electron source is able to support an operation at a high output.
摘要:
The present invention relates to an electron emitting device having a structure for efficiently emitting electrons. The electron emitting device has a substrate comprised of an n-type diamond, and a pointed projection provided on the substrate. The projection comprises a base provided on the substrate side, and an electron emission portion provided on the base and emitting electrons from the tip thereof. The base is comprised of an n-type diamond. The electron emission portion is comprised of a p-type diamond. The length from the tip of the projection (electron emission portion) to the interface between the base and the electron emission portion is preferably 100 nm or less.
摘要:
The present invention provides a cutting tool that achieves cutting with high precision. The cutting tool of the present invention includes a cutting edge composed of a polycrystalline body including high-pressure-phase hard grains that contain one or more elements selected from the group consisting of boron, carbon, and nitrogen, the polycrystalline body being formed by subjecting a non-diamond carbon material and/or boron nitride, serving as a starting material, to direct conversion sintering under ultra-high pressure and high temperature without adding a sintering aid or a catalyst, in which letting the radius of curvature of the nose of the cutting edge of the cutting tool be R1, the sintered grains constituting the polycrystalline body have an average grain size of 1.2×R1 or less and a maximum grain size of 2×R1 or less.
摘要:
An electron emitting device 2 comprises an electron emitting portion 6 made of diamond. At an electron emission current value of 10 μA or more, a deviation of the electron emission current value over one hour is within ±20% in the electron emitting device 2. The number of occurrence of step-like noise changing the electron emission current value stepwise is once or less per 10 minutes.
摘要:
A cold-cathode electron source is formed that successfully achieves a high frequency and a high output. Embodiments include a cold-cathode electron source comprising emitters having a tip portion tapered at an aspect ratio R of not less than 4, thereby decreasing capacitance between the emitters and a gate electrode by a degree of declination from the gate electrode, such that the cold-cathode electron source is able to operate at a high frequency. Embodiments also include a cold-cathode electron source formed of a diamond with a high melting point and a high thermal conductivity, such that the emitters operate at a high current density and at a high output.
摘要:
A method for production includes a step for forming concave molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concave molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si(111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
摘要:
A method for production includes a step for forming concaved molds on a surface of a substrate and a step for growing a diamond heteroepitaxially on the substrate in an atmosphere containing a doping material. The crystal structure of the slope of the concaved molds of the substrate can have the cubic system crystal orientation (111), and the doping material is phosphorous. Further, the substrate is Si, and the slope of the molds can be the Si (111) face. The diamond electron emission device contains projection parts on the surface thereof, where a slope of the projection parts 1 contains a diamond (111) face, and flat parts 2, which are not the projection parts, contain face orientations other than (100) face or (110) face and grain boundaries.
摘要:
A logical operation element and logical operation circuit are provided that are capable of high speed and a high degree of integration. A logical operation circuit has a construction wherein, in a logical operation element, the anodes of first and second field emission type microfabricated electron emitters are put at the same potential and two or more signal voltages are input to gate electrodes corresponding to these emitters. A NOR element so arranged that when a high potential input signal is input to either of the two lines, electron emission occurs from the emitters and the potential of said anodes is lowered, and a NAND element wherein the cathodes of the first and second field emission type microfabricated electron emitters are connected in series, two signal voltages are applied to the gate electrodes corresponding to the first and second emitter and the anode potential of the second emitter is lowered when the two input signals are high potential are employed.