Abstract:
A piston compressor comprises a piston (12) which oscillates in a cylinder (14). A compressed-gas supply arrangement is provided which comprises a compressed-gas accumulator (34), a compressed-gas supply line (18) between a compressed-gas source (20) and the compressed-gas accumulator (34). Further, the compressed-gas supply line (18) comprises an inlet valve (42) which is open when the piston (12) is in a filling position. The inlet valve (42) is defined by a cylinder wall opening (22) and a piston wall opening (38) which are located opposite each other when the piston (12) is in the filling position, thus defining an open valve, and which are closed by the piston wall (40) and the cylinder wall (24), respectively, when the piston (12) is in the non-filling position, thus defining a closed valve. Thereby, a valve is provided which does not comprise any moving parts and is thus easy to manufacture, is highly reliable and has a long service life.
Abstract:
A measurement amplifier has an integrator circuit (2) and a reference current source (33) which supplies a reference current to the input of the integrator when the voltage set at the output of the integrator (2) exceeds or falls below a reference voltage. In addition, a differentiator, for example, is provided which receives the output voltage of the integrator (2) and supplies an output signal which is proportional to the variation in time of the output voltage of the integrator. The output voltage of the differentiator is proportional to the input current to be measured by the measurement amplifier. The measurement amplifier allows very weak input currents to be rapidly and accurately detected.
Abstract:
Usually, a sniffing leak detector must be calibrated for each tracing gas. The calibration comprises ranging of the spectral positions into the mass spectrum and the amplitude height. At least one mass line is determined with a calibrating gas. The mass lines lying between two mass lines and/or between a zero point and a line are determined by interpolation and/or extrapolation. In this manner, a sniffing leak detector can be used for such tracing gases which have not previously been used for calibration purposes.
Abstract:
Two resistance elements (3, 6) are used for eliminating the influence of wall temperature on the gas pressure in a vessel, determined by a Pirani manometer. The first resistance element (3) is present in a first branch of a Wheatstone bridge (1), and the voltage is tapped by means of a voltage divider (7). The second resistance element (6) is present with a series resistance (5) in the second branch and is adjusted to a lower temperature. The changes in the voltages tapped at the branches are essentially identical for identical temperature changes at the resistance elements (3, 6), so that the Wheatstone bridge (1) remains balanced. The adjustment is improved by a constant current source (11). Another embodiment uses only one resistance element, whose temperature is reduced periodically during the balancing of the Wheatstone bridge and, after thermal equilibrium has been established, is determined by determining its resistance by means of a low constant current and is used for the computational compensation of the effect of the wall temperature. In a further embodiment, transient effects are produced by periodically switching a resistance back and forth and the frequencies are measured, from which the gas pressure is then determined.
Abstract:
A leak detection method using a specimen filled with a test gas positioned in front of a suction opening. Air is suctioned along the entire surface of the specimen and takes up test gas in the case of a leak. The test gas is recognized by a test gas detector. According to the invention, full mobility of the specimen is ensured during the testing process so that the leak detection method can be carried out while the specimens are moving past the suction opening.
Abstract:
An illumination device is provided at the handle-piece of a sniffing probe, in which the illumination device illuminates the region to be inspected. This incorporation considerably facilitates handling of the sniffing probe in difficult-to-access and poorly illuminated regions, for sniffing probes used for detecting gases, for example, for detecting a gas leakage in a cooling device of a motor vehicle.
Abstract:
To achieve a large measurement range from small up to larger leakage rates, a switchover from normal operation to gross operation occurs. In gross operation, the sucked-in gas flow is separated by different throttles, wherein the throttle that leads to the test gas sensor has a low flow rate. This manner of operation prevents a too large quantity of test gas from reaching the sensor surface and contaminating the sensor. In another alternative, in gross operation the test gas flows only across a part of the sensor surface. The other part is flushed.
Abstract:
Usually, a sniffing leak detector must be calibrated for each tracing gas. The calibration comprises ranging of the spectral positions into the mass spectrum and the amplitude height. At least one mass line is determined with a calibrating gas. The mass lines lying between two mass lines and/or between a zero point and a line are determined by interpolation and/or extrapolation. In this manner, a sniffing leak detector can be used for such tracing gases which have not previously been used for calibration purposes.
Abstract:
A leak detector comprising a base appliance provided with a gas detector, a vacuum pump, and a control device. A sniffer probe is connected to the base appliance. A test leak device containing the supply of test gas is arranged in a separate sub-housing. The sub-housing also contains a temperature sensor, a processor, and a data memory. The processor corrects the measured temperature according to a sample, and modulates the light of a light barrier. The processor is connected to the control device in the base appliance by a data cable.
Abstract:
Sniffing probes are frequently used for detecting leaking gases in difficult-to-access and poorly visible environments, for example for detecting a gas leakage in a cooling device of a motor vehicle. It is an object of the invention to improve handling of the sniffing probe. According to the invention, the object is achieved by providing an illumination device (25) at the handle-piece (14) of the sniffing probe (11), which illumination device (25) illuminates the region to be inspected. This considerably facilitates handling of the sniffing probe in difficult-to-access and poorly illuminated regions.