Abstract:
A composite material has a polymeric upper layer which is connected via at least one adhesive layer to a substrate. The substrate is predominantly or entirely formed by an open-cell polyurethane foam onto which the upper layer, containing between 2 and 12 wt % of polysiloxane, is bonded by an adhesive layer. An intermediate layer or a double layer, i.e. a composite of the intermediate layer with a bonding layer located between the substrate and the intermediate layer, is provided between the upper layer and the substrate as the adhesive layer for joining the upper layer and the substrate. The regions of the substrate into which the polyurethane dispersion of the adhesive layer has penetrated in a controlled manner during application have a density which is between 12% and 48%, above the density of the regions of the substrate without the adhesive layer.
Abstract:
A user interface method, including presenting by a computer executing a user interface, multiple interactive items on a display. A first sequence of images is captured indicating a position in space of a hand of a user in proximity to the display, and responsively to the position, one of the interactive items is associated with the hand. After associating the item, a second sequence of images is captured indicating a movement of the hand, and responsively to the movement, a size of the one of the items is changed on the display.
Abstract:
To endow a velourlike carrier (7), which has a finely fibrous surface, in particular a grain leather having a buffed topside or a synthetic velour material, and has been provided with a dressing (1) which has a grain texture on its face side the dressing (1) consisting of a consolidated polymeric dispersion and being produced separately on a substrate having a textured surface corresponding to the grain texture, with the requisite properties in terms of softness and abrasion resistance, but particularly in terms of air and water vapor permeability, the dressing (1) has capillaries (11) which extend throughout its entire thickness, which everywhere is substantially the same, and is bonded to the carrier (7) via a thin bonding layer (12) formed of a consolidated polymeric dispersion.
Abstract:
A coated leather, in particular split cowhide leather, has a preferably nubuck-like appearing surface structure. The coating is formed with a surface layer formed with a mechanically and moisture-stable polymer and bonded to the surface of the leather or split leather by a polymer-based bonding layer. The outer layer is notable for inner smoothness and is formed with soft polyurethane. It includes in the non-embossed region microdepressions which are essentially closed in the direction of the leather but are open towards the outside, have an internal width of less than 130 μm and are arranged close-packed to each other in the manner of soapy foam cells. The microdepressions are each separately bounded by thin mutually crosslinked stays which have on the outside a matt or finely fibrous fine-roughness structure surface, and have an essentially semispherical-shaped concave inner surface which faces outward and is smooth. The coating may include two or more layers that are riveted to each other by way of pins or the like that are anchored in pores.
Abstract:
In order to impart the requisite softness and friction-resistance properties, but especially the requisite air- and water vapor-permeability properties, to a substrate having a velvet-like, fine-grained surface, in particular a shagreen having a polished surface or a synthetic velvet provided on its visible side with a dressing having a shagreened structure and made of a solidified plastic dispersion separately produced on a support having a structured surface that corresponds to the shagreened structure, the dressing comprises capillaries which extends through its entire and substantially constant thickness, and is joined to the substrate by a thin connection layer made of a solidified plastic dispersion.
Abstract:
In a process for dressing a substantially flat substrate having on at least one side a rough surface fibers protruding therefrom, there is first heated a support member, the upper side of which consists of silicone rubber having anti-adhesive properties and comprises small recesses for transmitting a pattern to said dressing, whereupon a first aqueous dispersion of synthetic plastics material is applied onto the upper side of this support member for forming a first layer of the dressing. Subsequently, this support member is heated from the bottom side located opposite the upper side of the support member at least till solidification of the first layer. Subsequently a second aqueous dispersion of synthetic plastics material is applied onto the solidified first layer or onto the rough surface of the substrate, said second dispersion forming a second layer of the dressing when having become solidified. In the following, the substrate is placed with its rough surface onto the solidified first layer, the applied second aqueous dispersion of synthetic plastics material still being in a wet stage. Subsequently, the support member is heated from its bottom side and a pressure is applied onto the upper side of the substrate during a time interval of at least 10 seconds, whereby the second aqueous dispersion of synthetic plastics material becomes solified. Subsequently, the substrate provided with the dressing is removed from the support member.
Abstract:
An apparatus for producing a coating on a laminar carrier member, in particular for dressing split leather or similar substrates, comprises a supporting base having a surface consisting of silicon rubber or silicone resin, onto which surface is applied a liquid coating material by means of an electrostatic spraying device arranged above the supporting base for the purpose of producing a foil forming the visible side of the coating after solidification of the coating material. The surface of the supporting base is preferably provided with an embossed pattern, for example with the grain structure of natural leather. For the purpose of improving the adhesion of the foil, formed by solidification of the liquid coating material, on the supporting base, the surface of this supporting base is provided with a microscopic roughness. Alternatively, the area of the supporting base adjacent the aforesaid surface is made electrically conductive and held at a predetermined electrical potential. Microscopic roughness can be obtained by embedding filler materials within the area of the surface of the supporting base. Microscopic roughness can, also be obtained by mechanical, electrical, and/or chemical surface treatment.
Abstract:
Tires are improved against puncture damage by at least partially filling the inside of the tire with hollow spheres which contain a gas and whose thin shell consists of synthetic material, these spheres having a diameter of between 0.01 and 0.04 mm. and a density of 0.005 to 0.25 g/cc., and/or by lining at least a portion of the surface of the inner wall of the tire with a strip of composite material of low density comprising a suspension of said hollow spheres in a mass of liquid or pasty synthetic material of low molecular weight.
Abstract:
A composite material has a polymeric upper layer which is connected via at least one adhesive layer to a substrate. The substrate is predominantly or entirely formed by an open-cell polyurethane foam onto which the upper layer, containing between 2 and 12 wt % of polysiloxane, is bonded by an adhesive layer. An intermediate layer or a double layer, i.e. a composite of the intermediate layer with a bonding layer located between the substrate and the intermediate layer, is provided between the upper layer and the substrate as the adhesive layer for joining the upper layer and the substrate. The regions of the substrate into which the polyurethane dispersion of the adhesive layer has penetrated in a controlled manner during application have a density which is between 12% and 48%, above the density of the regions of the substrate without the adhesive layer.
Abstract:
The invention relates to a multilayered cut-to-size format comprising a thin, polyurethane-based coating (2) bonded via a polyurethane adhesive layer (3) to a textile backing (4).The invention provides that the backing (4) is a textile backing layer formed using a loop-formingly knitted fabric, a woven fabric or a fibrous non-woven web and having a thickness between 0.25 and 1.2 mm; there are capillaries in the coating (2); the solidified polyurethane dispersion (3) has a basis weight between 65 and 155 g/m2 and reaches by between 0.02 and 0.55 mm into the backing (4) non-filmingly; the coating (2) has a thickness of 0.09 to 0.21 mm and a hardness between 25 and 55 Shore A; and the backing (4) is bonded on its side opposite the coating (2) to a layer (5) of polychloroprene foam which has a closed-cell structure of the foam rubber type and a density between 0.05 and 0.42 g/cm3, preferably between 0.06 to 0.28 g/cm3.
Abstract translation:本发明涉及一种多层切割尺寸格式,包括通过聚氨酯粘合剂层(3)粘合到织物背衬(4)的薄的基于聚氨酯的涂层(2)。 本发明提供背衬(4)是使用环形成针织织物,机织织物或纤维无纺网形成并具有0.25至1.2mm厚度的织物背衬层; 涂层中有毛细管(2); 凝固的聚氨酯分散体(3)具有65至155g / m 2的单位面积,并且以非膜的方式到达背衬(4)的0.02至0.55mm之间; 涂层(2)的厚度为0.09至0.21mm,硬度为25至55肖氏A; 并且背衬(4)在其与涂层(2)相对的一侧上粘合到具有泡沫橡胶类型的闭孔结构并且密度在0.05至0.42g / cm 3之间的聚氯丁二烯泡沫的层(5),优选地 0.06〜0.28g / cm3。