Abstract:
Provided are treatment fluids that comprise a base fluid and an orthoester-based surfactant. In some instances, the treatment fluid may have a pH of about 8.5 or greater. Also provided are emulsified treatment fluids that comprise an oleaginous phase, an aqueous phase having a pH of about 8.5 or greater, and an orthoester-based surfactant. Methods of using the treatment fluid and methods of facilitating flow through a conduit also are provided.
Abstract:
A composition for treating a portion of a wellbore or a portion of a subterranean formation is provided, the composition comprising: (a) water; (b) a source of hydrogen peroxide, and (c) an activator for the source of hydrogen peroxide; wherein the pH of the composition is adjusted to be within an appropriate range for the type of activator. A method for treating a portion of a wellbore or a portion of a subterranean formation, the method comprising the steps of: forming or providing a composition comprising: (a) water; (b) a source of hydrogen peroxide, and (c) an activator for the source of hydrogen peroxide; wherein the pH of the composition is adjusted within an appropriate range for the type of activator; and introducing the composition through a wellbore to treat a portion of a wellbore or a portion of a subterranean formation. The activator can be a water-soluble alkanoyl-donor compound or a chelated transition metal. Preferably, the composition further comprises an iron chelating agent. The composition and method are adapted for breaking a viscosity increasing polymer, such as xanthan. The method has particular applications where the static temperature of the portion of the wellbore or the portion of the subterranean formation to be treated is less than 100° F. (38° C.).
Abstract:
The present invention relates to environmentally friendly compositions and methods for removing or suppressing metal ions in waters, flowback waters, and produced waters to make such waters suitable for subsequent use in oil-field applications and for delinking metal cross-linked gelling agents. One embodiment of the present invention provides a method of providing a competitive binder and allowing the competitive binder to interact with interfering metal ions in a flowback fluid to suppress or remove interfering metal ions.
Abstract:
The present invention relates to synthetic polymers having high molecular weights and low polydispersities and methods of synthesis. In one embodiment of the present invention, a polymer includes a polyacrylate polymer obtained from a polymerization reaction in which the polyacrylate polymer has a molecular weight of at least about 500,000 and a polydispersity index of about 1.25 or less.
Abstract:
The present invention relates to synthetic polymers having high molecular weight and low polydispersities, and methods of synthesis thereof. One embodiment of the present invention provides a method of polymerizing that includes dissolving acrylate monomers in a fluid media having an olefin-containing polyalcohol amide surfactant; and initiating a polymerization reaction of the acrylate monomers with a polymerization initiator to produce a polymer having a molecular weight of at least about 500,000 and a polydispersity index of about 1.25 or less.
Abstract:
The present invention relates to fluids useful for subterranean operations, and more particularly, to fluorosurfactants useful for the reduction of water blocks, gas blocks, and/or gas condensates and their associated treatment fluids and methods. Provided is a method of treating a subterranean formation. The method may comprise contacting the subterranean formation with a fluorosurfactant. The fluorosurfactant may comprise an amine group, wherein the amine group comprises at least one substituent selected from the group consisting of a fluoroalkyl group, a fluoroalkenyl group, and combinations thereof, wherein the at least one substituent comprises about 3 carbons to about 22 carbons. Also provided are polymeric surfactants and treatment fluids that comprise fluorosurfactants.
Abstract:
The present invention relates to synthetic polymers having high molecular weights and low polydispersities and methods of synthesis. In one embodiment of the present invention, a polymer includes a polyacrylate polymer obtained from a polymerization reaction in which the polyacrylate polymer has a molecular weight of at least about 500,000 and a polydispersity index of about 1.25 or less.
Abstract:
The present invention relates to fluids useful for subterranean operations, and more particularly, to fluorosurfactants useful for the reduction of water blocks, gas blocks, and/or gas condensates and their associated treatment fluids and methods. Provided is a method of treating a subterranean formation. The Method may comprise contacting the subterranean formation with a fluorosurfactant. The fluorosurfactant may comprise an amine group, wherein the amine group comprises at least one substituent selected from the group consisting of a fluoroalkyl group, a fluoroalkenyl group, and combinations thereof, wherein the at least one substituent comprises about 3 carbons to about 22 carbons. Also provided are polymeric surfactants and treatment fluids that comprise fluorosurfactants.
Abstract:
Polymeric and polymeric composite parts for pumps and a method of manufacturing same are disclosed. More specifically, a valve insert comprising a polymeric seal sized to fit on an outside diameter of a valve closure member for a plunger pump; a pressure packing element ring for a plunger on a plunger pump; and a pressure packing element ring for a push rod on plunger of a plunger pump, each of said articles being formed from a naphthalene-1,5-diisocyanate (NDI) based polyurethane component and an extender.
Abstract:
Methods of making particulates for use in a subterranean application comprising: providing particulates of a settable composition comprising a cementitious material, a filler material, and an activator of the cementitious material; and pre-curing the particulates until the particulates reach a crush strength of about 50 psi or greater; and curing the pre-cured particulates at a temperature in the range of about 230° F. to about 600° F., so that at least a portion of the particulates comprise a newly formed crystalline phase.