Abstract:
The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII activity, which produce bisected N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
Abstract:
The present invention relates to eukaryotic host cells, especially lower eukaryotic host cells, having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIII, GnTIV, GnTV, GnT VI or GnTIX activity, which produce bisected and/or multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
Abstract:
The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal β-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
Abstract:
The present invention relates to host cells having modified lipid-linked oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells have a GlcNAcMan3GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g., glycosyl-transferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
Abstract:
Methods for display of recombinant proteins or protein libraries on the surface of lower eukaryotes such as yeast and filamentous fungi are described. The methods are useful for screening libraries of recombinant proteins in lower eukaryotes to identify particular proteins with desired properties from the array of proteins in the libraries. The methods are particularly useful for constructing and screening antibody libraries in lower eukaryotes.
Abstract:
The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal β-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
Abstract:
The present invention provides Herpes Simplex Virus (HSV) gD, gC, gB and/or gE recombinant glycoproteins having a particular pre-selected N-linked glycosylation pattern as the predominant N-glycoform. The present invention also provides methods of producing these recombinant glycoproteins in yeast, preferably Pichia pastoris, which may be glycoengineered to provide particular glycosylation patterns. The present invention further provides vaccines comprising gD and gC, and optionally gB and/or gE, at least one of which has a particular pre-selected N-linked glycosylation pattern as the predominant N-glycoform. The recombinant glycoproteins are produced by a method which, in one embodiment, comprises transforming a yeast of the genus Pichia with an expression vector containing a DNA encoding an HSV glycoprotein, which is under regulation of a promoter functional in a yeast of the genus Pichia, culturing the yeast in a medium, and recovering the recombinant glycoprotein from the obtained culture. DNA encoding the recombinant glycoproteins is preferably codon-optimized to achieve optimal expression in Pichia.
Abstract:
Lower eukaryotic host cells have been engineered to produce glycoprotein having at least one terminal α-galactosyl epitope. The glycoproteins are useful for the production of highly antigenic glycoprotein compositions with advantages for the production of vaccines.
Abstract:
The present invention provides a novel lower eukaryotic host cell producing human-like glycoproteins characterized as having a terminal β-galactose residue and essentially lacking fucose and sialic acid residues. The present invention also provides a method for catalyzing the transfer of a galactose residue from UDP-galactose onto an acceptor substrate in a recombinant lower eukaryotic host cell, which can be used as a therapeutic glycoprotein.
Abstract:
Methods for display of recombinant proteins or protein libraries on the surface of lower eukaryotes such as yeast and filamentous fungi are described. The methods are useful for screening libraries of recombinant proteins in lower eukaryotes to identify particular proteins with desired properties from the array of proteins in the libraries. The methods are particularly useful for constructing and screening antibody libraries in lower eukaryotes.