Abstract:
Disclosed are methods of producing Ni/YSZ porous anode bodies for solid oxide fuel cells. According to the methods, a small amount of a nickel compound or salt is used as a pore former. Upon heating in air, the nickel compound or salt is decomposed into nickel oxide and releases gases, resulting in volume shrinkage. Therefore, Ni/YSZ porous bodies having a uniform pore size and reduction products thereof can be produced in an economical manner.
Abstract:
A rechargeable battery includes an electrode assembly having a separator between electrode plates, a case accommodating the electrode assembly, a cap plate coupled to an opening of the case, an electrode terminal through a terminal hole in the cap plate, a gasket between the electrode terminal and an interior circumference of the terminal hole, an insulator between the cap plate and the electrode terminal, a portion of the gasket being between the insulator and the electrode terminal, and a sealing member between the gasket and the insulator, the sealing member extending continuously along a first surface of the gasket and along a first surface of the insulator, the first surface of the gasket and the first surface of the insulator being non-parallel to each other.
Abstract:
A rechargeable battery according to an embodiment of the present invention includes an electrode assembly, a case, electrode terminals, a cap plate, and current collecting plates. The electrode assembly includes a first electrode, a separator, and a second electrode. The case contains the electrode assembly. The electrode terminals are electrically connected to respective electrodes. The current collecting plates have support protrusions inserted into an interior of the electrode assembly, and welding protrusions welded to lateral ends of the electrode assembly.
Abstract:
The present invention relate to a method for authenticating a low performance device, and more particularly, to a device authenticating method, in which a low performance device such as a smart meter of a smart grid is authenticated in a matrix operation instead of an exponential operation through a homomorphic hash function (HHF) of a non-square matrix M, so that the amount of operations required for authenticating the device can be reduced and the device can be safely authenticated even without a separate certificate authority.
Abstract:
A storage device is provided including a flash memory, and a controller programming first bit data and second bit data into the flash memory and not backing up the first bit data when programming the first bit data and the second bit data in the same transaction and backing up the first bit data when programming the first bit data and the second bit data in different transactions, wherein the first bit data is less significant bit data than the second bit data, and each of the transactions is determined using a sync signal transmitted from a host.
Abstract:
A rechargeable battery including an electrode assembly capable of being charged and discharged; a case accommodating the electrode assembly; a cap assembly, the cap assembly including a cap plate coupled to an opening of the case, and a vent member in the cap plate, the vent member being configured to open at a predetermined internal pressure, a terminal exposed to an outer side of the cap plate; a lower insulating member, the lower insulating member insulating the terminal and the cap plate at a lower side of the cap plate; and a channel member between the electrode assembly and the cap plate and forming a space, the channel member being fixed to the lower insulating member.
Abstract:
A method for forming a semiconductor device is disclosed. An anti-fuse is formed at a buried bit line such that the area occupied by the anti-fuse is smaller than that of a conventional planar-gate-type anti-fuse, and a breakdown efficiency of an insulation film is increased. This results in an increase in reliability and stability of the semiconductor device. A semiconductor device includes a line pattern formed over a semiconductor substrate, a device isolation film formed at a center part of the line pattern, a contact part formed at both sides of the line pattern, configured to include an oxide film formed over the line pattern, and a bit line formed at a bottom part between the line patterns, and connected to the contact part.
Abstract:
A display device includes a first substrate, a display section that is on the first substrate and that displays an image, first pad portions at a first directional edge of the first substrate and connected to the display section and to a driver integrated circuit (driver IC) that supplies a driving voltage, a second substrate on the first substrate with the display section interposed therebetween, and which exposes the first pad portions, a touch section that is on the second substrate and that corresponds to the display section, second pad portions on the second substrate and connected to edges of the touch section, a main flexible printed circuit board (main FPCB) connected to the first pad portions, and a touch flexible printed circuit board (touch FPCB) connected to the second pad portions and overlapping the main FPCB.
Abstract:
A display device includes an upper substrate on a lower substrate, a driver integrated chip (IC) on the lower substrate, the driver IC and upper substrate contacting different parts of the lower substrate, a plurality of bumper units along edges of the driver IC, and a deformation preventing bumper unit between the bumper units, the deformation preventing bumper unit being configured to prevent the driver IC from being deformed.
Abstract:
An RFID reader control system and method is provided. A protocol for controlling an RFID reader and an RFID reader control unit of a mobile phone is defined. Messages, information, commands, responses, and notification are constructed and transmitted between the RFID reader and the RFID reader control unit.