Abstract:
Provided is a method of controlling a vehicle, the method including: determining a driving mode based on a speed of the vehicle and a user-selected driving mode, the determining the driving mode comprising driving the vehicle using power supplied from at least one power supply source of power supply sources, the power supply sources including: 1) first and second engine generators, each configured to generate power by using turning force; 2) a battery charged by the first or second engine generator; and 3) an ultra capacitor charged by the first or second engine generator; and determining an alternative driving mode comprising switching from the at least one power supply source of the power supply sources to another power supply source of the power supply sources to drive the vehicle if a failure occurs in the at least one power supply source of power supply sources.
Abstract:
A method of booting a multisystem including a first core and a second core, the method includes: executing a boot loader of the first core; setting a network interface of the first core to be in an enable state; detecting the second core that is connected to the network interface of the first core; mapping a first memory of the first core to a second memory of the second core; loading a booting image of the first core and a booting image of the second core on the first memory; and transferring the booting image of the second core loaded on the first memory to the second core via a network.
Abstract:
Provided are a panel inspection method and apparatus, the panel inspection method including: (a) determining if a variance value of luminance of a captured image of a panel is greater than a reference value, and searching for an original image and at least one secondary reflective image of a defect of the panel if it is determined that the variance value is greater than the reference value; and (b) determining whether the defect is an actual defect or an impurity disposed on the panel based on at least one of a difference in a luminance characteristic between the original image and the secondary reflective image and a number of the searched secondary reflective image.
Abstract:
Provided is a video recording system. The video recording system includes a camera configured to obtain an image signal, a host system configured to obtain the image signal from the camera and support a serial bus protocol, a sub-system including a serial bus interface unit configured to transmit or receive data to or from the host system, and a storage device configured to receive the image signal from the host system and record the received image signal.
Abstract:
Provided is an image stabilizing apparatus and method for correcting an image that is shaken due to a movement of a camera. The image stabilizing apparatus includes a characterizing point checking region setting unit including: a sample frame extract unit which extracts a plurality of image frames obtained for a certain period of time in image data obtained by photographing an object; and a frame analyzing unit which detects a plurality of characterizing points in the extracted plurality of image frames, and sets a characterizing point checking region which is used to check characterizing points in a currently input image frame.
Abstract:
Provided is a method of manufacturing an impeller assembly, the method including providing an impeller including: a rotary shaft; a base portion radially extending outward from the rotary shaft; and a plurality of blades extending radially outward from the rotary shaft and disposed on the base portion, each of the plurality of blades provided apart from one another in a circumferential direction around the rotary shaft; providing a mold in an area between the plurality of blades; and forming a shroud covering upper portions of the plurality of blades and an upper portion of the mold, wherein the forming the shroud comprises applying a melted metal on the upper portions of the plurality of blades and the upper portion of the mold.
Abstract:
Provided are a light apparatus of a chip mounter which emits light to sides of a plurality of parts picked up by a plurality of nozzles of a chip mounter, the light apparatus including: at least one light module including a plurality of sloping portions each of which includes a plurality of slopes, wherein a slope of the plurality of slopes includes a light source emitting light to a side of a first part picked up by a first nozzle among the plurality of nozzles of the chip mounter.
Abstract:
A vehicle with independently driven multiple axles and a controller which independently drives the multiple axles are disclosed. The controller includes a first controller which determines a target control value including at least one of a mechanical steering angle of each of a plurality of wheels of a vehicle, a target yaw moment of the vehicle, a target longitudinal force of the vehicle, and a target wheel speed of each of the plurality of wheels; and a second controller which determines wheel torques of the plurality of wheels, which drive the plurality of wheels independently, based on the target control value, wherein the wheel torques of the plurality of wheels are different from one another.
Abstract:
An integrated control system and method using a vehicle surveillance camera, the method including: receiving vehicle license plate number information obtained by analyzing an image captured using the vehicle surveillance camera, from the vehicle surveillance camera via a server; receiving time information and position information about when and where the captured image was generated, from the vehicle surveillance camera via the server; and constructing a database by referring to the vehicle license plate number information, the time information, and the position information received via the server.