摘要:
A bandgap voltage reference and voltage regulator system includes a bandgap voltage reference circuit and a voltage regulator circuit that share a single, common amplifier. The amplifier acts as a gain stage for the reference circuit and as an error amplifier for a driver stage of the regulator circuit. The regulator circuit has an input reference generated by the reference circuit, and the reference circuit acts as a load to the driver stage, obviating the need for a bias resistance network. By sharing the amplifier and obviating the need for a resistance network, the area and overall quiescent current of the system are reduced. The system can be implemented in CMOS/BiCMOS technology and is suited for low power applications.
摘要:
A relaxation oscillator for generating an output clock signal includes an RC circuit, a self-biased comparator stage, and a logic circuit. The RC circuit generates first and second comparator input signals that are provided to the self-biased comparator stage. The self-biased comparator stage includes first and second input stages and a voltage reference circuit. Each of the first and second input stages in conjunction with the voltage reference circuit forms a comparator, i.e., first and second comparators corresponding to the first and second input stages, respectively. The self-biased comparator stage generates first and second comparator output signals, based on the first and second comparator input signals. The first and second comparator output signals are provided to the logic circuit that generates the output clock signal.
摘要:
Systems and methods for low-power voltage tamper detection are described. In some embodiments, an integrated circuit may include source-follower circuitry configured to produce a scaled down supply voltage. The integrated circuit may also include undervoltage detection circuitry coupled to the source-follower circuitry, the undervoltage detection circuitry configured to output a first signal having a first logic value if the scaled down supply voltage is greater than a low threshold voltage or a second logic value if the scaled down supply voltage is smaller than the low threshold voltage. Additionally or alternatively, the integrated circuit may include overvoltage detection circuitry coupled to the source-follower circuitry, the overvoltage detection circuitry configured to output a second signal having the first logic value if the scaled down supply voltage is smaller than a high threshold voltage or the second logic value if the scaled down supply voltage is greater than the high threshold voltage.
摘要:
A synchronizer circuit and method for transferring data between mutually asynchronous source and destination clock domains. An input synchronizer cell clocked at an input clock frequency receives input data from the source domain and produces a corresponding intermediate signal. A frequency divider produces a divided clock signal whose frequency is equal to the input clock frequency divided by an integer. An output synchronizer module comprises first and second cascaded synchronizer cells clocked at the divided clock frequency, receives the intermediate signal and produces a corresponding output signal for the destination clock domain.
摘要:
A charge pump includes a charge pump core circuit having a first current source transistor, a second current source transistor and an output terminal (64), and a replica bias circuit. The replica bias circuit has a first reference current source transistor, a second reference current source transistor and a reference node corresponding to the output terminal of the charge pump core circuit. The reference node is connected to gates of the second current source transistor and the second reference current source transistor. A first input of a regulator circuit is connected to the output terminal of the charge pump core circuit. A second input of the regulator circuit is connected to the reference node of the replica bias circuit. An output of the regulator circuit (54) is connected to gates of the first current source transistor and the first reference current source transistor.
摘要:
A temperature compensated current reference circuit has a differential amplifier and a first feedback transistor with a gate coupled to the differential amplifier output. The first feedback transistor couples a supply voltage line to an inverting input of the differential amplifier. There is also a second feedback transistor with a gate coupled to the differential amplifier output, which couples the supply voltage line to a non-inverting input of the differential amplifier. A first temperature dependent conductor couples the inverting input to ground. A primary reference resistor and a second temperature dependent conductor are connected in series and couple the non-inverting input to ground. An output current control transistor has a gate and one other electrode coupled together and a third electrode coupled to the supply voltage line. A secondary reference resistor and a conductivity change sensing transistor are connected in series and couple the gate of the output current control transistor to ground. The conductivity change sensing transistor has a gate coupled to the second one of the two differential inputs. There is a temperature compensation current reference output circuit that has a current reference transistor, an input coupled to the differential amplifier output and another input is coupled to the gate of the output current control transistor.
摘要:
A compensation circuit and a method that compensates for process, voltage and temperature (PVT) variations in an integrated circuit that includes functional modules. The compensation circuit includes a signal generator, a first code generator, a second code generator, and a mapping module. The signal generator generates a first signal and a second signal depending on aligned process corner, voltage and temperature variations and skewed process corner variations respectively. The first code generator receives the first signal, and generates a first calibration code. The second code generator receives the second signal, and generates a second calibration code. The mapping module provides the first and second calibration codes for compensating for the aligned process corner, voltage and temperature variations and the skewed process corner variations associated with the functional modules respectively.
摘要:
A compensation circuit and a method for detecting and compensating for process, voltage, and temperature (PVT) variations in an integrated circuit. The integrated circuit includes plural logic modules that include PMOS transistors and NMOS transistors. The compensation circuit includes first and second functional modules, which generate first and second calibration signals. The first and the second calibration signals are used to compensate for the PVT variations in PMOS and NMOS transistors.
摘要:
A digital clock frequency doubler for increasing an input frequency of an input clock signal includes an input block, and a generator block. The input block receives the input clock signal, and generates a pulse signal having an ON period equal to the input clock signal period. The generator block is coupled to the input block. The generator block receives the pulse signal and divides a period of the pulse signal by a period of a high frequency digital signal and then generates an output clock signal with an output frequency that is about two times the input frequency.
摘要:
A capacitor charging circuit has input, output and control nodes, first and second series connected primary FETs, and first and second leakage current reduction FETs. All of the FETs have their gates coupled to the control node. The first primary FET is coupled between the input and output nodes, and the second primary FET is coupled between the output node and a leakage current reduction node. The first leakage current reduction FET is coupled between a supply line and the leakage current reduction node, and the second leakage current reduction FET is coupled between the leakage current reduction node and ground. When a control signal at the control node is low, the first primary FET and the first leakage current reduction FET are conductive, and the second primary FET and the second leakage current reduction FET are non-conductive, which eliminates sub-threshold leakage current flowing through the second primary FET.