摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
A programmable logic device is provided with adaptive equalization circuitry that is programmable in one or more respects. Examples of the programmable aspects of the equalization circuitry are (1) the number of taps used, (2) whether integer or fractional spaced taps are used, (3) what starting values are used in the computation of coefficient values, (4) whether satisfactory coefficient values are computed only once or on an on-going basis, (5) whether an error signal is generated using a decision directed algorithm or using a training pattern, (6) what training pattern (if any) is used, and/or (7) the location of the sampling point in the bit period of the signal to be equalized.
摘要:
Equalization circuitry may be used to compensate for the attenuation of a data signal caused by a transmission medium. The control circuitry for the equalization circuitry may generate control inputs for equalization stages that control the amount of gain provided to the data signal. A comparator may determine whether the gain from the equalization circuitry is less than or more than the desired amount of gain. A programmable up/down counter may adjust the counter value based on the output of the comparator. The counter value may be converted into one or more analog voltages using one or more digital-to-analog converters. These analog voltages may be provided to the equalization stages as control inputs. The control circuitry may also include hysteresis circuitry that prevents the counter value from being adjusted when the gain produced by the equalization stages is close to the desired amount of gain.
摘要:
High-speed serial interface (“HSSI”) transceiver circuitry (e.g., on a programmable logic device (“PLD”) integrated circuit) includes input buffer circuitry with adaptive equalization capability. The transceiver circuitry also includes an output driver, which may include pre-emphasis capability (preferably controllably settable). Selectively usable loop-back circuitry is provided for allowing the output signal of the input buffer to be applied substantially directly to the output driver. The loop-back circuitry may include a loop-back driver, which may be turned on substantially only when needed for loop-back operations.
摘要:
Systems and methods for adjusting a signal received from a communication path are disclosed. A receiver can receive a signal from a communication path which attenuates at least some frequency components of the signal. The receiver can include an equalization block that adjusts at least some of the frequency content of the received signal, a signal normalization block that provides a normalized signal amplitude and/or a normalized edge slope, and a control block. In one embodiment, the control block controls frequency adjustment in the equalization block for high frequencies. For low frequency adjustment, user-programmable parameters control the normalized signal amplitude in the signal normalization block and the low frequency adjustment in the equalization block.
摘要:
Serial data signal receiver circuitry for inclusion on a PLD includes a plurality of equalizer circuits that are connected in series and that are individually controllable so that collectively they can compensate for a wide range of possible input signal attenuation characteristics. Other circuit features may be connected in relation to the equalizer circuits to give the receiver circuitry other capabilities. For example, these other features may include various types of loop-back test circuits, controllable termination resistance, controllable common mode voltage, and a controllable threshold for detection of an input signal. Various aspects of control of the receiver circuitry may be programmable.
摘要:
A first trimming capacitor having a first terminal and a second terminal is coupled in parallel between a first terminal and a second terminal of a first capacitor. The first trimming capacitor comprises a first plurality of switched capacitors having different capacitances coupled in parallel. Each of the switched capacitors comprises a switch capacitor and a switch coupled in series. In an illustrative application the first capacitor and the first trimming capacitor are coupled between an output terminal of an operational amplifier (op-amp) and an inverting input terminal of the op-amp. A second capacitor and a second trimming capacitor similar to the first capacitor and the first trimming capacitor are coupled between an input and the inverting input terminal of the op-amp.
摘要:
A low-voltage reference circuit may have a pair of semiconductor devices. Each semiconductor device may have an n-type semiconductor region, an n+ region in the n-type semiconductor region, a metal gate, and a gate insulator interposed between the metal gate and the n-type semiconductor region through which carriers tunnel. The metal gate may have a work function matching that of p-type polysilicon. The gate insulator may have a thickness of less than about 25 angstroms. The metal gate may form a first terminal for the semiconductor device and the n+ region and n-type semiconductor region may form a second terminal for the semiconductor device. The second terminals may be coupled to ground. A biasing circuit may use the first terminals to supply different currents to the semiconductor devices and may provide a corresponding reference output voltage at a value that is less than one volt.
摘要:
Equalization of an incoming data signal can be controlled by sampling that signal at times when data values in that signal should be stable (“data samples”) and when that signal should be in transition between successive data values that are different (“transition samples”). A transition sample that has been taken between two successive differently valued data samples is compared to a reference value (which can be one of those two data samples). The result of this comparison can be used as part of a determination as to whether to increase or decrease equalization of the incoming data signal.
摘要:
A programmable logic device is provided with adaptive equalization circuitry that is programmable in one or more respects. Examples of the programmable aspects of the equalization circuitry are (1) the number of taps used, (2) whether integer or fractional spaced taps are used, (3) what starting values are used in the computation of coefficient values, (4) whether satisfactory coefficient values are computed only once or on an on-going basis, (5) whether an error signal is generated using a decision directed algorithm or using a training pattern, (6) what training pattern (if any) is used, and/or (7) the location of the sampling point in the bit period of the signal to be equalized.