Abstract:
A light source device includes a lead frame, a first solid-state lighting chip, a first transparent encapsulation, a second solid-state lighting chip, and a second transparent encapsulation. The first solid-state lighting chip and the second solid-state lighting chip are respectively located at two opposite sides of the lead frame and electrically connected to the lead frame. The first transparent encapsulation and the second transparent encapsulation respectively encapsulate the first solid-state lighting chip and the second solid-state lighting chip.
Abstract:
A photocatalyst device includes a photocatalyst member and a light source. The light source is configured to emit ultraviolet light to the photocatalyst member. The ultraviolet light has a wavelength equal to or less than about 400 nanometers, and more than 365 nanometers.
Abstract:
A light source device includes a lead frame, a first solid-state lighting chip, a first transparent encapsulation, a second solid-state lighting chip, and a second transparent encapsulation. The first solid-state lighting chip and the second solid-state lighting chip are respectively located at two opposite sides of the lead frame and electrically connected to the lead frame. The first transparent encapsulation and the second transparent encapsulation respectively encapsulate the first solid-state lighting chip and the second solid-state lighting chip.
Abstract:
A light chain includes a plurality of light emitting diodes (LEDs) electrically connected to each other. Each LED includes an LED chip having a first pole and a second pole, and a packaging layer encapsulating the LED chip. A first electrode has an inner end connected to the first pole, and an outer end extending to the outside of the packaging layer. A second electrode has an inner end connected to the second pole, and an outer end extending to the outside of the packaging layer. A third electrode has a first outer end and a second outer end located at the outside. The outer end of the first electrode and the first outer end cooperatively form a first plug; the outer end of the second electrode and the second outer end cooperatively form a second plug configured to attach to a first plug of an adjacent LED.
Abstract:
An oral illuminator includes a solid state light-emitting element emitting light, an optical fiber, and a light diffuser. The optical fiber is arranged between the solid state light-generating element and the diffuser for transmitting the light of the solid state light-generating element to the diffuser. The optical fiber has an incident surface optically coupled to the solid state light-generating element, and an emitting surface optically coupled to the diffuser.
Abstract:
In one embodiment, an exemplary light source assembly includes a light source device, a optical component, and a light pervious filling layer interposed between the light source and the optical component. The light source includes a light pervious cover. The light pervious filling layer can reduce a refraction loss and reflection loss of light.
Abstract:
A planar illumination device includes at least one light source, a housing structure, at least one light guide plate, and at least one light exiting surface. The at least one light source is received in the housing structure. The housing structure includes at least one light emitting surface through which the light emitted from the at least one light source exits the at least one housing. The at least one light guide plate includes at least one light incidence surface through which the light enters into the at least one light guide plate, and contacts with the at least one light emitting surface. The light exits the at least one light guide plate through the at least one light exiting surface. The at least one light exiting surface includes a plurality of continuously connected bulge points formed thereon.
Abstract:
A light chain includes a plurality of light emitting diodes (LEDs) electrically connected to each other. Each LED includes an LED chip having a first pole and a second pole, and a packaging layer encapsulating the LED chip. A first electrode has an inner end connected to the first pole, and an outer end extending to the outside of the packaging layer. A second electrode has an inner end connected to the second pole, and an outer end extending to the outside of the packaging layer. A third electrode has a first outer end and a second outer end located at the outside. The outer end of the first electrode and the first outer end cooperatively form a first plug; the outer end of the second electrode and the second outer end cooperatively form a second plug configured to attach to a first plug of an adjacent LED.
Abstract:
An exemplary illuminating device includes a light source container, a light source and a drying chamber. The light source container includes a receiving room. The light source is received in the receiving room. The drying chamber has desiccant received therein and communicates with the receiving room. The desiccant is configured for absorbing moisture in the illuminating device, therefore, drying the illuminating device.
Abstract:
A flip-chip light emitting diode includes a substrate, an LED chip and a plurality of conductive bumps. The substrate has at least one recess defined in the surface of the substrate, and at least a part of the conductive bumps is embedded the at least one recess. The LED chip is mounted on a surface of the substrate by a flip-chip mounting process. The conductive bumps are sandwiched between the substrate and the LED chip to bond and electrically connect the LED chip to the substrate.