Abstract:
A NVM including a substrate, a control gate layer, a charge storage layer, a tunneling layer, a charge barrier layer, a gate dielectric layer and a first doping region is described. The control gate layer is disposed in a first trench of the substrate; the charge storage layer is disposed between the sidewall of the first trench and the control gate layer; the tunneling layer is disposed between the sidewall of the first trench and the charge storage layer; the charge barrier layer is disposed between the charge storage layer and the control gate layer; the gate dielectric layer is disposed between the bottom of the first trench and the control gate layer; and the first doping region is disposed in the substrate at one side of the control gate layer.
Abstract:
A fabrication method for a non-volatile memory is provided. To fabricate the non-volatile memory, a plurality of first trenches and second trenches are formed in a substrate, wherein the second trenches are disposed above the first trenches and cross over the first trenches. Then, a tunneling layer and a charge storage layer are sequentially formed on both sidewalls of each second trench. An isolation layer is filled into the first trench. Furthermore, a charge barrier layer is formed on the sidewall of the second trench, and a gate dielectric layer is formed at the bottom of the second trench. A control gate layer is filled into the second trench. Finally, two first doping regions are formed in the substrate at both sides of the control gate layer.
Abstract:
The method for preparing a deep trench uses a dry etching process to form a trench in a silicon substrate, and an etching mixture is then coated on the surface of the silicon substrate and inside the deep trench. A portion of etching mixture is removed from the surface of the silicon substrate and the trench above a predetermined depth from the surface of the substrate, and an etching process is then performed using the etching mixture remaining inside the trench to etch the silicon substrate below the predetermined depth so as to form the deep trench. The etching mixture comprises a conveying solution and an etchant, and the viscosity of the conveying solution is higher than that of the etchant. The conveying solution is spin-on-glass or a photoresist, and the etchant is tetramethylammonium hydroxide, ammonium, or hydrofluoric acid. The volume ratio of the conveying solution and the etchant is preferably between 50:1 and 20:1.
Abstract:
A method of manufacturing a trench non-volatile memory cell, comprises the steps of: providing a semiconductor substrate; performing ion implantation to form a source region in the semiconductor substrate; forming a trench on the semiconductor substrate by silicon etching, the trench reaching down to the source region; growing a first isolation layer on the surface of the semiconductor substrate, and the bottom and sidewall of the trench; forming a hollow-shaped first conducting layer in the trench; performing thermal oxidation on the first conducting layer to form a bird's beak isolation layer and a floating gate, which are the oxidized and unoxidized part of the first conducting layer, respectively, wherein the floating gate has a peak; partially removing the first isolation layer and the bird's beak isolation layer to bare the surface of the semiconductor substrate, the peak and the sidewall of the trench; depositing a second conducting layer; patterning the second conducting layer to form a control gate; and defining a drain region in the semiconductor substrate.
Abstract:
A power MOSFET structure comprises at least one first gate in the cell area and at least one second gate at the peripheral that are both in a semiconductor substrate. The first and second gates are electrically connected, and the second gate is connected to a contact so as to electrically connect to a bond pad for transmitting gate control signals. The semiconductor substrate comprises a first semiconductor layer, a second semiconductor layer and a third semiconductor layer in downward sequence. The first and third semiconductor layers are of a first conductive type, e.g., n-type, and the second semiconductor layer is of a second conductive type, e.g., p-type. The first and third semiconductor layers serve as the source and the drain, respectively.
Abstract:
A dynamic random access memory structure having a vertical floating body cell includes a semiconductor substrate having a plurality of cylindrical pillars, an upper conductive region positioned on a top portion of the cylindrical pillar, a body positioned below the upper conductive portion in the cylindrical pillar, a bottom conductive portion positioned below the body in the cylindrical pillar, a gate oxide layer surrounding the sidewall of the cylindrical pillar and a gate structure surrounding the gate oxide layer. The upper conductive region serves as a drain electrode, the bottom conductive region serves as a source electrode and the body can store carriers such as holes. Preferably, the dynamic random access memory structure further comprises a conductive layer positioned on the surface of the semiconductor substrate to electrically connect the bottom conductive regions in the cylindrical pillars.
Abstract:
The method for preparing a deep trench uses a dry etching process to form a trench in a silicon substrate, and an etching mixture is then coated on the surface of the silicon substrate and inside the deep trench. A portion of etching mixture is removed from the surface of the silicon substrate and the trench above a predetermined depth from the surface of the substrate, and an etching process is then performed using the etching mixture remaining inside the trench to etch the silicon substrate below the predetermined depth so as to form the deep trench. The etching mixture comprises a conveying solution and an etchant, and the viscosity of the conveying solution is higher than that of the etchant. The conveying solution is spin-on-glass or a photoresist, and the etchant is tetramethylammonium hydroxide, ammonium, or hydrofluoric acid. The volume ratio of the conveying solution and the etchant is preferably between 50:1 and 20:1.
Abstract:
A TFT LCD device is comprised of four TFT's with two separate sources, two separate drains and one common source-drain which is shared by the four respective TFT's, either acting as source or drain. The gate structure employs only one gate line with a bypass line. By sharing of the Si island and the centralization of the gate electrode of four TFT's, the pixel open ratio increases quite substantially. The devices are connected to the two adjacent pixels separated by the gate line via the two drain electrodes. Each pixel electrode is connected to the two adjacent devices via the two drain electrodes. Each pixel electrode can receive the data signals which are controlled by the two adjacent devices, to form a redundant structure for improving the yield of the TFT LCD. The common source-drain is situated along the gate bus line, and doesn't occupy too much of the pixel area, to thereby provide a large open ratio.