Abstract:
The present invention relates to the production and culture of undifferentiated spermatogonial stem cells that can be maintained long term and are feeder free. The resultant feeder-free populations can be used in any of a number of protocols including the generation of progeny bulls. The present invention includes novel methods required for the successful enrichment of bovine spermatogonial stem cells, novel cell lines and other components used for the same, as well as the resultant stem cell compositions.
Abstract:
Oxygenase enzymes and the use of such enzymes to produce paclitaxel (Taxolnull), related taxoids, as well as intermediates in the Taxol biosynthetic pathway are disclosed. Also disclosed are nucleic acid sequences encoding the oxygenase enzymes.
Abstract:
Composite panels and pulp, and paper products of the pulp, are produced from Arundo donax. In the fabrication of the composite panels, Arundo donax is comminuted to a suitable size, combined with a binder, and consolidated into panels that meet standards for construction and/or furniture grade panels. The Arundo donax particulates may be combined with wood particulates to produce a mixed furnish that can be used in the preparation of composite panels. Comminuted Arundo donax is treated, in conventional pulping processes, to produce a high tensile strength pulp that can be used in the production of paper. The pulp has a lighter color than wood pulp, and thereby uses less bleaching chemicals to achieve a desired whiteness. The pulp can be combined with wood pulp to produce a variety of products.
Abstract:
The present invention relates to genes encoding plant acyl-CoA synthetases and methods of their use. In particular, the present invention is related to plant acyl-coenzyme A synthetases. The present invention encompasses both native and recombinant wild-type forms of the enzymes, as well as mutant and variant forms, some of which possess altered characteristics relative to the wild-type enzyme. The present invention also relates to methods of using acyl-CoA synthetases, including altered expression in transgenic plants and expression in prokaryotes and cell culture systems.
Abstract:
The present invention relates to genes encoding plant acyl-CoA synthetases and methods of their use. In particular, the present invention is related to plant acyl-coenzyme A synthetases. The present invention encompasses both native and recombinant wild-type forms of the enzymes, as well as mutant and variant forms, some of which possess altered characteristics relative to the wild-type enzyme. The present invention also relates to methods of using acyl-CoA synthetases, including altered expression in transgenic plants and expression in prokaryotes and cell culture systems.
Abstract:
The present invention relates to genes encoding plant acyl-CoA synthetases and methods of their use. In particular, the present invention is related to plant acyl-coenzyme A synthetases. The present invention encompasses both native and recombinant wild-type forms of the enzymes, as well as mutant and variant forms, some of which possess altered characteristics relative to the wild-type enzyme. The present invention also relates to methods of using acyl-CoA synthetases, including altered expression in transgenic plants and expression in prokaryotes and cell culture systems.
Abstract:
The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.
Abstract translation:本发明涉及编码植物1-脱氧-D-木酮糖-5-磷酸还原异构酶蛋白质的表达的分离的DNA序列,例如编码1-脱氧-D-木酮糖的SEQ ID NO:1所示的序列 -5-薄荷薄荷(Mentha x piperita)的5-磷酸还原异构酶蛋白。 另外,本发明涉及分离的植物1-脱氧-D-木酮糖-5-磷酸还原异构酶蛋白。 在其它方面,本发明涉及可复制的重组克隆载体,其包含编码植物1-脱氧-D-木酮糖-5-磷酸还原异构酶的核酸序列转化,转染,感染和/或注射的修饰的宿主细胞 与本发明的重组克隆载体和/或DNA序列。
Abstract:
The amino acid and nucleic acid sequences of a Δ5-desaturase enzyme and a Δ8-desaturase enzyme are disclosed. The nucleic acid sequences can be used to design recombinant DNA constructs and vectors. These vectors can then be used to transform various organisms, including for example, plants and yeast. The transformed organisms will then produce polyunsaturated fatty acids. The amino acid sequences are useful for generating enzyme-specific antibodies that are useful for identifying the desaturases.
Abstract:
In exemplary embodiments, the invention provides Pseudomonas fluorescens 2-79 strains having pyrrolnitrin biosynthetic genes for biocontrol of soilborne diseases.
Abstract:
Methods for producing functionalized graphene from graphite oxide or graphite are disclosed in which ionic liquids are used as a reaction medium to promote chemical functionalization of the graphene through electrochemically interacted exfoliation of graphene sheets.