摘要:
The present invention discloses a photovoltaic device comprising a multilayer structure for generating and transporting charge, wherein the multilayer structure comprises: a substrate; an anode layer; a hole transporting layer; a first nanostructure/conjugated polymer hybrid layer; an network-shaped electron transporting layer matched to the hybrid layer; and a cathode layer. The mentioned electron transporting layer is composed of a plurality of second nanostructures, and the plurality of second nanostructures is staked on each other, so as to form the interconnecting network. Furthermore, this invention also discloses methods for forming the photovoltaic device.
摘要:
The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
摘要:
The present invention discloses an acrylate nanocomposite material which can apply to optoelectronic device encapsulation, dental restorations and light waveguide. The acrylate nanocomposite material comprises an inorganic nano-particle, an acrylate monomer with at least one acrylate group, an imidized acrylate oligomer and a photo-initiator. The acrylate nanocomposite material photopolymerizes to form an organic/inorganic 3D network wherein the absorption (%) is 0.01 to 5.00 and the permeability (g mm/m2 day) is 0.01 to 10.00 thereof. In addition, the transmittance of the nanocomposite is over 90%.
摘要翻译:本发明公开了可应用于光电器件封装,牙科修复体和光波导的丙烯酸酯纳米复合材料。 丙烯酸酯纳米复合材料包含无机纳米颗粒,具有至少一个丙烯酸酯基团的丙烯酸酯单体,酰亚胺化的丙烯酸酯低聚物和光引发剂。 丙烯酸酯纳米复合材料光聚合形成有机/无机3D网络,其中吸收(%)为0.01〜5.00,磁导率(g mm / m2·日)为0.01〜10.00。 此外,纳米复合材料的透射率超过90%。
摘要:
The present invention discloses a time passage indicating apparatus which comprises a substrate, a background layer on the substrate, and a time passage indicating layer on the background layer. The background layer and the time passage indicating layer bond to each other through a first and second polymer binder. The background layer displays a background color. The time passage indicating layer displays an initial color in an initial state that is different from the background color, and a final color in a final state that is substantially the same as the background color, so as to indicate the end of a time period where the time passage indicating layer transforms from the initial state to the final state.
摘要:
The present invention discloses an acrylate nanocomposite material which can apply to optoelectronic device encapsulation, dental restorations and light waveguide. The acrylate nanocomposite material comprises an inorganic nano-particle, an acrylate monomer with at least one acrylate group, an imidized acrylate oligomer and a photo-initiator. The acrylate nanocomposite material photopolymerizes to form an organic/inorganic 3D network wherein the absorption (%) is 0.01 to 5.00 and the permeability (g mm/m2 day) is 0.01 to 10.00 thereof. In addition, the transmittance of the nanocomposite is over 90%.
摘要翻译:本发明公开了可应用于光电器件封装,牙科修复体和光波导的丙烯酸酯纳米复合材料。 丙烯酸酯纳米复合材料包含无机纳米颗粒,具有至少一个丙烯酸酯基团的丙烯酸酯单体,酰亚胺化的丙烯酸酯低聚物和光引发剂。 丙烯酸酯纳米复合材料光聚合形成有机/无机3D网络,其中吸收(%)为0.01〜5.00,磁导率(g mm / m2·日)为0.01〜10.00。 此外,纳米复合材料的透射率超过90%。
摘要:
A solar cell coating and a method for manufacturing the solar cell coating. The solar cell coating is formed by adding a low bandgap material, a semiconductor material and a conductive polymer to a solvent or performing high-temperature milling on a mixture formed by mixing a conductive polymer material, a low bandgap material and a semiconductor material so that the solar cell coating exhibits high capability in transporting carriers effectively to transmit the electrons and holes to respective electrodes rapidly. Since the low bandgap material exhibits a small bandgap, MEG takes place to generate a plurality of electro-hole pairs when a photon is absorbed by the low bandgap material. Besides, by mixing the three materials corresponding to different conductive and valence bands respectively, a ladder structure formed by the HOMO and the LUMO corresponding to the three materials respectively will assist effective and rapid carrier transport.
摘要:
The present invention discloses a solar cell having a multi-layered nanostructure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a hole-blocking layer, a photo-active layer, and an anode. The hole-blocking layer is made of the material selected from the group consisting of the following: inorganic semiconducting material, metal oxide material and mixture of inorganic and metal oxide materials. The photo-active layer comprises a porous body and a conjugated polymer filler. The porous body is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The conjugated polymer filler is formed in the pores of the porous body by in-situ polymerization. In addition, the invention discloses a method for preparing the solar cell having a multi-layered nanostructure.
摘要:
The present invention discloses an apparatus for indicating the passage of time, comprising a substrate and an indicating layer formed on the substrate. The indicating layer comprises a polymer matrix and a predetermined amount of redox compound under the reduced form. The redox compound is dispersed in the polymer matrix and has the following properties: the reduced form of the redox compound reacts with oxygen to form the oxidized form of the redox compound; the hue or color density of the reduced form of the redox compound is different from that of the oxidized form of the redox compound; and the hue or color density of the indicating layer varies as the time for the reduced form of the redox compound contacting with oxygen in environment increases to have the amount of the oxidized form of the redox compound increase so as to indicate the passage of time.
摘要:
A single electron device. Fabricated from nanoparticle derivatives, particularly from Au and fullerene nanoparticle derivatives, the device reduces thermal fluctuation in the nanoparticle array and has 15 nm of spacing between two electrodes.
摘要:
The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.