摘要:
A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
摘要:
A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
摘要:
A polymer matrix composite containing graphene sheets homogeneously dispersed in a polymer matrix wherein the polymer matrix composite exhibits a percolation threshold from 0.0001% to 0.1% by volume of graphene sheets to form a 3D network of interconnected graphene sheets or network of electron-conducting pathways.
摘要:
A process for producing a highly oriented graphene oxide (GO) film, comprising: (a) preparing either a GO dispersion having GO sheets dispersed in a fluid medium or a GO gel having GO molecules dissolved in a fluid medium; (b) dispensing the GO dispersion or gel onto a surface of an application roller rotating in a first direction to form an applicator layer of GO and transferring the applicator layer to a surface of a supporting film driven in a second direction opposite to the first direction to form a wet layer of GO on the supporting film; and (c) removing said fluid medium from the wet layer of GO to form a dried layer of GO having an inter-planar spacing d002 of 0.4 nm to 1.2 nm and an oxygen content no less than 5% by weight. This dried GO layer may be heat-treated to produce a graphitic film.
摘要:
A process for producing a transparent conductive film, comprising (a) providing a graphene oxide gel; (b) dispersing metal nanowires in the graphene oxide gel to form a suspension; (c) dispensing and depositing the suspension onto a substrate; and (d) removing the liquid medium to form the film. The film is composed of metal nanowires and graphene oxide with a metal nanowire-to-graphene oxide weight ratio from 1/99 to 99/1, wherein the metal nanowires contain no surface-borne metal oxide or metal compound and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
摘要:
A method of producing a transparent and conductive film, comprising (a) forming aerosol droplets of a first dispersion comprising a first conducting nano filaments in a first liquid; (b) forming aerosol droplets of a second dispersion comprising a graphene material in a second liquid; (c) depositing the aerosol droplets of a first dispersion and the aerosol droplets of a second dispersion onto a supporting substrate; and (d) removing the first liquid and the second liquid from the droplets to form the film, which is composed of the first conducting nano filaments and the graphene material having a nano filament-to-graphene weight ratio of from 1/99 to 99/1, wherein the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square.
摘要:
An optically transparent and electrically conductive film composed of metal nanowires or carbon nanotubes combined with pristine graphene with a metal nanowire-to-graphene or carbon nanotube-to-graphene weight ratio from 1/99 to 99/1, wherein the pristine graphene is single-crystalline and contains no oxygen and no hydrogen, and the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square. This film can be used as a transparent conductive electrode in an electro-optic device, such as a photovoltaic or solar cell, light-emitting diode, photo-detector, touch screen, electro-wetting display, liquid crystal display, plasma display, LED display, a TV screen, a computer screen, or a mobile phone screen.
摘要:
Disclosed herein are methods for preparing graphene/nano-titanium dioxide composites. About 500 to 10,000 parts by weight of nano-titanium dioxide and about 1 part by weight of graphene are distributed in a water-ethanol (about 2:1 to 3:1 by volume) solution to obtain a dispersion. The nano-titanium dioxide and graphene within the dispersion are allowed to react under a pressure of about 10 to 15 MPa and a temperature of about 100 to 200° C. thereby producing the graphene/nano-titanium dioxide composites.
摘要:
The present invention discloses a solar cell having a multi-layered nanostructure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a hole-blocking layer, a photo-active layer, and an anode. The hole-blocking layer is made of the material selected from the group consisting of the following: inorganic semiconducting material, metal oxide material and mixture of inorganic and metal oxide materials. The photo-active layer comprises a porous body and a conjugated polymer filler. The porous body is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The conjugated polymer filler is formed in the pores of the porous body by in-situ polymerization. In addition, the invention discloses a method for preparing the solar cell having a multi-layered nanostructure.
摘要:
A ceramic capacitor comprising at least a dielectric ceramic layer and at least a graphene electrode layer deposited on the ceramic layer, wherein the graphene electrode layer has a thickness no less than 2 nm and consists of a graphene material or a graphene composite material containing at least 0.1% by weight of a graphene material dispersed in a matrix material or bonded by a binder material, wherein the graphene material is selected from (a) a plurality of single-layer or multi-layer pristine graphene sheets having less than 0.01% by weight of non-carbon elements, or (b) one or a plurality of a non-pristine graphene material having at least 0.01% by weight of non-carbon elements, wherein the non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof.