Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
Abstract:
A power MOSFET device and manufacturing method thereof, includes the steps of selectively depositing a first conductive material in the middle region at the bottom of a contact trench and contacting with light-doped N-type epitaxial layer to form a Schottky junction and depositing a second conductive material at the side wall and bottom corner of the contact trench and contacting with P-type heavy-doped body region to form an ohmic junction. The first and second conductive materials can respectively optimize the performance of the ohmic contact and the Schottky contact without compromise. Meanwhile, the corner of the contact trench is surrounded by P-type heavy-doped region thereby effectively reducing the leakage currents accumulated at the corner of the contact trench.
Abstract:
A power MOSFET device and manufacturing method thereof, includes the steps of selectively depositing a first conductive material in the middle region at the bottom of a contact trench and contacting with light-doped N-type epitaxial layer to form a Schottky junction and depositing a second conductive material at the side wall and bottom corner of the contact trench and contacting with P-type heavy-doped body region to form an ohmic junction. The first and second conductive materials can respectively optimize the performance of the ohmic contact and the Schottky contact without compromise. Meanwhile, the corner of the contact trench is surrounded by P-type heavy-doped region thereby effectively reducing the leakage currents accumulated at the corner of the contact trench.
Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate comprising a heavily doped region formed on a lightly doped region and having an active cell area and an edge termination area. The edge termination area comprises a plurality of termination trenches formed in the heavily doped region with the termination trenches lined with a dielectric layer and filled with a conductive material therein. The edge termination further includes a plurality of buried guard rings formed as doped regions in the lightly doped region of the semiconductor substrate immediately adjacent to the termination trenches.
Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device comprises a plurality of trenches formed at a top portion of the semiconductor substrate extending laterally across the semiconductor substrate along a longitudinal direction each having a nonlinear portion comprising a sidewall perpendicular to a longitudinal direction of the trench and extends vertically downward from a top surface to a trench bottom surface. The semiconductor power device further includes a trench bottom dopant region disposed below the trench bottom surface and a sidewall dopant region disposed along the perpendicular sidewall wherein the sidewall dopant region extends vertically downward along the perpendicular sidewall of the trench to reach the trench bottom dopant region and pick-up the trench bottom dopant region to the top surface of the semiconductor substrate.
Abstract:
A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device comprises a plurality of trenches each having a trench endpoint with an endpoint sidewall perpendicular to a longitudinal direction of the trench and extends vertically downward from a top surface to a trench bottom surface. The semiconductor power device further includes a trench bottom dopant region disposed below the trench bottom surface and a sidewall dopant region disposed along the endpoint sidewall wherein the sidewall dopant region extends vertically downward along the endpoint sidewall of the trench to reach the trench bottom dopant region and pick-up the trench bottom dopant region to the top surface of the semiconductor substrate.