Abstract:
The examples relate to various implementations of a software configurable lighting device, having an enhance display device that is able to generate light sufficient to provide general illumination of a space in which the lighting device is installed and provide an image display. The general illumination is provided by additional light sources and/or improved display components of the enhanced display device.
Abstract:
A ultraviolet (UV) intensity indicator might use a UV responsive lumiphore to provide a converted, visible light level proportional to received UV light intensity for comparison to a visible brightness reference. For a desired UV intensity, the converted light should normally appear at least as bright as the reference light. For undesired UV, e.g. in a harmful wavelength range, the converted light should appear dimmer than the reference for normal operation and/or appear as bright as or brighter than the reference during excessive emission of the potentially hazardous UV emission. Alternatively, saturable lumiphores may provide different color outputs responsive to UV intensities for comparison to a multi-colored reference. Other examples contemplate use of a lumiphore to convert UV light to provide a visible light input to a visible light meter, such that an illuminance or brightness measurement by the meter gives a proportional representation of intensity of the UV light.
Abstract:
To improve efficiency, particularly for general illumination applications, a source of green or yellow light includes a solid state device (e.g. a laser diode) to produce an infrared laser beam and a light frequency up-converter to convert the infrared light into green or yellow light. A luminaire includes such a source as well as a source providing two other colors of light, such as red and blue (e.g. not green or yellow). The emitters of the other source may be light emitting diodes or additional laser diodes. The luminaire outputs a combination of the various colors of lights from the sources, for example, to produce white light. If the different emitters are independently controllable, the luminaire may be adjusted or ‘tuned’ to output white light of different color characteristics and/or to output combined light of various colors over a wide region of the visible light color gamut.
Abstract:
An example luminaire includes a laser light source, a photoluminescent material and a holographic optical element. The holographic optical element has a hologram optically coupled to the laser light source and to the photoluminescent material. The hologram is configured to distribute light received from the laser light source as a pattern of light to the photoluminescent material.
Abstract:
The examples relate to various implementations to enable simultaneous controllable lighting distribution and a wide angle image light output from areas of a luminaire. An example of such a luminaire includes image light emitters and an array of general illumination light emitters for general illumination. A grid structure that has a supporting grid of rows and columns with intersection points and transparent sections or gaps is used to maintain a spaced arrangement of the general illumination light emitters and the image light emitters. Each of the transparent sections is bounded by individual structural members of the grid meeting at individual intersection points. In a specific example, image light emitters are located at intersection points of the grid structure. The general illumination light emitters are optically coupled for emitting general illumination light through the transparent sections of the grid.
Abstract:
The disclosed examples relate to various implementations of a micro-light emitting diode upon which is built a controllable variable optic to provide a chip-scale light emitting device. An example of the controllable variable optic described herein is a controllable electrowetting structure having a leak-proof sealed cell with a first fluid having a first index of refraction and a second fluid having a second index of refraction. The controllable electrowetting structure may be integrally formed on or in a substrate or semiconductor material associated with the micro-light emitting diode in alignment with one or more of the light emitting diodes of the micro-LED device to provide a controllable lighting distribution.