Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The display may be operated in at least a normal viewing mode, a privacy mode, an outdoor viewing mode, and a power saving mode. The different view modes may exhibit different viewing angles. In one configuration, the display may include a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the collimated light source depending on the current viewing mode of the display. In another configuration, the display may include a backlight unit that generates a scattered light source that includes a switchable microarray structure such as a switchable mirror structure or a tunable microlens array for selectively collimating the scattered light source depending on the current viewing mode.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The display may be operated in at least a normal viewing mode, a privacy mode, an outdoor viewing mode, and a power saving mode. The different view modes may exhibit different viewing angles. In one configuration, the display may include a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the collimated light source depending on the current viewing mode of the display. In another configuration, the display may include a backlight unit that generates a scattered light source that includes a switchable microarray structure such as a switchable mirror structure or a tunable microlens array for selectively collimating the scattered light source depending on the current viewing mode.
Abstract:
An electronic device may be provided with electrical components mounted in an electronic device housing. A display module may be attached to a display cover layer with a layer of adhesive to form a display module assembly. The display module assembly may include a display module assembly chassis. The display module assembly chassis may include a plastic display module assembly chassis molded over a metal display module assembly chassis. The display module assembly and a backlight unit may be assembled to form a display module that is installed within the electronic device housing or display module assembly layers and backlight unit structures may be assembled into the electronic device housing. The backlight unit may include a backlight unit chassis. A metal housing midplate may serve as part of the backlight unit chassis.
Abstract:
An electronic device may be provided with a display. The display may include a liquid crystal display cell and an organic light-emitting diode backlight unit. The liquid crystal display cell may include a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The organic light-emitting diode backlight unit may include organic emissive material formed on a substrate. The organic emissive material may generate backlight for liquid crystal display cell. Display pixels in the liquid crystal display cell may control the emission of the backlight from the display. The organic light-emitting diode backlight unit may be attached to the display using adhesive, laminated to a polarizer layer of the display cell, or may be integrated into the liquid crystal display cell. The backlight unit may include conductive vias or bent extended edge portions for coupling the backlight unit to control circuitry.
Abstract:
A display may include pixels (such as light-emitting diode pixels) that are susceptible aging effects (burn-in). To help avoid visible artifacts caused by burn-in during operation of the display, compensation circuitry may be used to compensate image data for the display. An optical sensor may be included behind the pixels to directly measure pixel brightness levels. The optical sensor may provide optical sensor data from testing operations to the compensation circuitry. The optical sensor may gather data during burn-in testing operations. During the burn-in testing operations, pixel groups including both high-usage pixels and low-usage pixels may sequentially emit light while the optical sensor gathers data. Brightness differences between the high-usage pixels and low-usage pixels may be used to characterize pixel aging in the display and compensate image data to mitigate visible artifacts caused by burn-in. The optical sensor may also gather data during global brightness testing operations.
Abstract:
An electronic device such as a wristwatch device or other device may have a display. The display may be used to continuously display information such as watch face information. A watch face image on the display may contain watch face elements such as watch face hands, watch face indices, and complications. To reduce burn-in risk for watch face elements, control circuitry in the electronic device may impose burn-in constraints on attributes of the watch face elements such as peak luminance constraints, dwell time constraints, color constraints, constraints on the shape of each element, and constraints on element style. These constraints may help avoid situations in which static elements such as watch face indices create more burn-in than dynamic elements such as watch face hands.
Abstract:
An electronic device such as a wristwatch device or other device may have a display. The display may be used to continuously display information such as watch face information. A watch face image on the display may contain watch face elements such as watch face hands, watch face indices, and complications. To reduce burn-in risk for watch face elements, control circuitry in the electronic device may impose burn-in constraints on attributes of the watch face elements such as peak luminance constraints, dwell time constraints, color constraints, constraints on the shape of each element, and constraints on element style. These constraints may help avoid situations in which static elements such as watch face indices create more burn-in than dynamic elements such as watch face hands.
Abstract:
An electronic device may be provided with a display having a backlight with light sources of different colors. The electronic device may include a color ambient light sensor that measures the color of ambient light and control circuitry that adjusts the color of light emitted from the backlight based on the color of ambient light. The light sources may include at least first and second light-emitting diodes that emit light having different color temperatures. The control circuitry may adjust the intensity of light emitted from the first light-emitting diode relative to the intensity of light emitted from the second light-emitting diode to produce a backlight color that more closely matches the color of ambient light. The first and second light-emitting diodes may include an ultraviolet light-emitting diode die and a blue light-emitting diode die that are mounted in a common semiconductor package.
Abstract:
A display may have a backlight unit with a row of light-emitting diodes that emit light into the edge of a light guide plate. The light guide plate may have opposing upper and lower surfaces. The upper surface of the light guide plate may have ridges and the lower surface of the light guide plate may have bumps. The edge of the light guide plate may have light mixing structures. The light mixing structures may include edge surfaces that refract light at a high angle. The high angle light may then be reflected by a reflective surface so that the light propagates down the light guide plate. Some light may pass through the light mixing structures and propagate down the light guide plate without being reflected by the reflective surface. This arrangement may reduce the mixing distance of the backlight unit.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The display may be operated in at least a normal viewing mode, a privacy mode, an outdoor viewing mode, and a power saving mode. The different view modes may exhibit different viewing angles. In one configuration, the display may include a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the collimated light source depending on the current viewing mode of the display. In another configuration, the display may include a backlight unit that generates a scattered light source that includes a switchable microarray structure such as a switchable mirror structure or a tunable microlens array for selectively collimating the scattered light source depending on the current viewing mode.