Abstract:
A wireless data processing device is described which periodically exits an unpowered state and transmits location data. For example, one embodiment of a wireless data processing device comprises: power circuitry for maintaining the wireless data processing device in a powered or unpowered state, the power circuitry causing the wireless data processing device to enter into an unpowered state responsive to user input; a timer to periodically power up the wireless device or portion thereof in response to reaching a predetermined time; a location services module determining a current location of the wireless data processing device using one or more specified location determination techniques; a transmit thread transmitting the current location of the wireless device over one or more specified communication channels; and the power circuitry powering down the wireless, data processing device a second time after the current location has been transmitted.
Abstract:
A wireless data processing device is described which periodically exits an unpowered state and transmits location data. For example, one embodiment of a wireless data processing device comprises: power circuitry for maintaining the wireless data processing device in a powered or unpowered state, the power circuitry causing the wireless data processing device to enter into an unpowered state responsive to user input; a timer to periodically power up the wireless device or portion thereof in response to reaching a predetermined time; a location services module determining a current location of the wireless data processing device using one or more specified location determination techniques; a transmit thread transmitting the current location of the wireless device over one or more specified communication channels; and the power circuitry powering down the wireless data processing device a second time after the current location has been transmitted.
Abstract:
Systems, methods, and computer-readable media for determining the temperature of a light-generating component of a display assembly using a voltage of the light-generating component are provided. In one embodiment, a method for operating an electronic device, which may include an external surface and a light-emitting diode operative to emit light for illuminating the external surface, may include detecting the forward voltage of the light-emitting diode, calculating the temperature of the light-emitting diode using the detected forward voltage of the light-emitting diode, and altering the performance of the electronic device based on the calculated temperature of the light-emitting diode. Additional embodiments are also provided.
Abstract:
An electronic device may be provided with a display. The display may include a liquid crystal display cell and an organic light-emitting diode backlight unit. The liquid crystal display cell may include a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The organic light-emitting diode backlight unit may include organic emissive material formed on a substrate. The organic emissive material may generate backlight for liquid crystal display cell. Display pixels in the liquid crystal display cell may control the emission of the backlight from the display. The organic light-emitting diode backlight unit may be attached to the display using adhesive, laminated to a polarizer layer of the display cell, or may be integrated into the liquid crystal display cell. The backlight unit may include conductive vias or bent extended edge portions for coupling the backlight unit to control circuitry.
Abstract:
A display may have an array of organic light-emitting diodes that form an active area on a flexible substrate. Metal traces may extend between the active area and an inactive area of the flexible substrate. Display driver circuitry such as a display driver integrated circuit may be attached to a flexible printed circuit that is attached to the flexible substrate in the inactive area. The metal traces may extend across a bend region in the flexible substrate. The flexible substrate may be bent in the bend region. The flexible substrate may be locally thinned in the bend region. A neutral stress plane adjustment layer may cover the metal traces in the bend region. The neutral stress plane adjustment layer may include polymer layers such as an encapsulation layer, a pixel definition layer, a planarization layer, and a layer that covers a pixel definition layer and planarization layer.
Abstract:
A wireless data processing device is described which periodically exits an unpowered state and transmits location data. For example, one embodiment of a wireless data processing device comprises: power circuitry for maintaining the wireless data processing device in a powered or unpowered state, the power circuitry causing the wireless data processing device to enter into an unpowered state responsive to user input; a timer to periodically power up the wireless device or portion thereof in response to reaching a predetermined time; a location services module determining a current location of the wireless data processing device using one or more specified location determination techniques; a transmit thread transmitting the current location of the wireless device over one or more specified communication channels; and the power circuitry powering down the wireless data processing device a second time after the current location has been transmitted.
Abstract:
An electronic device can include a substrate and a conductive layer. The conductive layer can be disposed over at least a portion of the substrate and a patterned conductive material can be disposed over at least a portion of the conductive layer. Alternatively, the patterned conductive layer can be disposed over at least a portion of a surface of the substrate and the conductive layer can be disposed over a portion of the surface of the substrate and in between the patterned conductive material. The conductive layer can be disposed over at least a portion of the patterned conductive material. The patterned conductive material can have a resistivity that is lower than a resistivity of the conductive layer.
Abstract:
A display may have an array of organic light-emitting diodes that form an active area on a flexible substrate. Metal traces may extend between the active area and an inactive area of the flexible substrate. Display driver circuitry such as a display driver integrated circuit may be coupled to the inactive area. The metal traces may extend across a bend region in the flexible substrate. The flexible substrate may be bent in the bend region. The flexible substrate may be made of a thin flexible material to reduce metal trace bending stress. A coating layer in the bend region may be provided with an enhanced elasticity to allow its thickness to be reduced. The flexible substrate may be bent on itself and secured within an electronic device without using a mandrel.
Abstract:
Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
Abstract:
An electronic device may be provided with a display. Backlight structures may be used to provide backlight for the display. The backlight structures may include a light guide plate. A rectangular ring-shaped chassis may have a rectangular opening that receives the light guide plate. One or more edges of the chassis may be provided with an array of notches that receive light-emitting diodes or other light sources. The light sources may launch light into edge portions of the light guide plate. The chassis may include a first plastic structure such as a light reflecting structure formed from a material such as white plastic. The first plastic structure may surround two or more peripheral edges of the light guide plate. The chassis may also include a second plastic structure such as a light blocking structure formed from a material such as black plastic that helps prevent light leakage.