Abstract:
A display may have an array of pixels. The pixels may have color filter elements such as red, green, and blue color filter elements. A layer of opaque material may be used to form a black matrix. The black matrix may have openings that receive the color filter elements. A backlight unit may produce backlight illumination for the display. A reflector layer may be interposed between the black matrix and the backlight unit. The reflector layer may have openings aligned with the openings in the black matrix and the color filter elements and may overlap the black matrix. Some of the backlight from the backlight unit may pass through the color filter elements. Other backlight may by be recycled by being reflected off of the reflector layer, thereby enhancing backlight efficiency.
Abstract:
Systems including and methods for forming a backplane for an electronic display are presented. The backplane includes interlaced crystallized regions, and the interlaced crystallized regions include at least a left column of crystallized regions and a right column of crystallized regions. The left and right columns include rows of crystallized regions with gaps disposed between each of the rows. Furthermore, each crystallized region in the left column extends into a corresponding gap in the right column, and each crystallized region in the right column extends into a corresponding gap in the left column.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. A first low-k dielectric layer may be formed on the passivation layer. Data line routing structures may be formed on the first low-k dielectric layer. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. The first and second low-k dielectric, layers may be formed from material having substantially similar refractive indices to maximize backlight transmittance and may have appropriate thicknesses so as to minimize parasitic capacitive loading.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. An oxide liner may be formed on the passivation layer. A first low-k dielectric layer may be formed on the oxide liner. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. Thin-film transistor gate structures may be formed in the passivation layer. Conductive routing structures may be formed on the oxide liner, on the first low-k dielectric layer, and on the second low-k dielectric layer. The use of routing structures on the oxide liner reduces overall routing resistance and enables interlaced metal routing, which can help reduce the inactive border area outside the active display regions.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have an array of pixels. The pixels may have color filter elements such as red, green, and blue color filter elements. A layer of opaque material may be used to form a black matrix. The black matrix may have openings that receive the color filter elements. A backlight unit may produce backlight illumination for the display. A reflector layer may be interposed between the black matrix and the backlight unit. The reflector layer may have openings aligned with the openings in the black matrix and the color filter elements and may overlap the black matrix. Some of the backlight from the backlight unit may pass through the color filter elements. Other backlight may by be recycled by being reflected off of the reflector layer, thereby enhancing backlight efficiency.
Abstract:
Improvement of visual uniformity of an integrated touch screen display is provided. A touch screen can include common electrodes separated by gaps in a Vcom layer. To improve visual non-uniformity in the display resulting from the gaps, a first set of semi-transparent dummy features (primary-dummy features) can be formed on a second layer at the locations of the gaps, and a second set of dummy features (supplementary-dummy features) can also be formed on the second layer or another layer to mitigate low spatial resolution of the primary-dummy features and/or non-uniform spacing of the primary-dummy features. In some examples, holes or slits can be formed in the Vcom layer at areas of the supplementary-dummy features to further improve visual uniformity.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. An oxide liner may be formed on the passivation layer. A first low-k dielectric layer may be formed on the oxide liner. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. Thin-film transistor gate structures may be formed in the passivation layer. Conductive routing structures may be formed on the oxide liner, on the first low-k dielectric layer, and on the second low-k dielectric layer. The use of routing structures on the oxide liner reduces overall routing resistance and enables interlaced metal routing, which can help reduce the inactive border area outside the active display regions.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have a thin-film transistor layer and a color filter layer. The display may include light blocking structures formed on a transparent substrate. In one arrangement, a clear planarization layer may be formed over the light blocking structures. The thin-film transistor layer may be formed over the planarization layer. The color filter layer may be integrated with the thin-film transistor layer. At least light blocking structures and the planarization layer should be formed from high temperature resistance material. In another arrangement, the color filter layer may be formed on the light blocking structures. A clear planarization layer may then be formed over the color filter layer. The thin-film transistor layer may be formed on the planarization layer. In this arrangement, the color filter layer also needs to be formed from thermal resistance material.