Abstract:
Apparatuses, systems, and methods for performing efficient discovery of edge computing servers. A wireless device may provide an edge compute request to an edge discovery service, which may indicate one or more criteria for the edge compute request. The edge discovery service may select one or more edge application servers for the edge compute request based on edge compute resource availability profile information that it stores for multiple edge application servers and the one or more criteria for the edge compute request. The edge discovery service may provide a response to the edge compute request to the wireless device, which may include an indication of the selected edge application server or servers.
Abstract:
Apparatuses, systems, and methods for performing efficient discovery of edge computing servers. A wireless device may provide an edge compute request to an edge discovery service, which may indicate one or more criteria for the edge compute request. The edge discovery service may select one or more edge application servers for the edge compute request based on edge compute resource availability profile information that it stores for multiple edge application servers and the one or more criteria for the edge compute request. The edge discovery service may provide a response to the edge compute request to the wireless device, which may include an indication of the selected edge application server or servers.
Abstract:
Described are call handling methods performed by a carrier network or client stations. A method performed by a carrier network includes designating rules for call handling for an account, receiving first and second voice calls for the account, wherein the voice calls may be either an incoming calls or originated calls and handling the first and second voice calls for the account based on the rules. A method performed by a client station includes receiving a first invitation to a first call, responding to the first invitation causing the first call to be active, receiving a second invitation to a second call while the first call remains active and responding to the second invitation causing the second call to be active and the first call to be on hold, the client station is prevented from originating a call when one call is active and one call is on hold.
Abstract:
Apparatuses, systems, and methods for performing efficient discovery of edge computing servers. A wireless device may provide an edge compute request to an edge discovery service, which may indicate one or more criteria for the edge compute request. The edge discovery service may select one or more edge application servers for the edge compute request based on edge compute resource availability profile information that it stores for multiple edge application servers and the one or more criteria for the edge compute request. The edge discovery service may provide a response to the edge compute request to the wireless device, which may include an indication of the selected edge application server or servers.
Abstract:
Determining whether to operate in a single radio access technology (RAT) mode or a dual RAT mode for a user equipment (UE) having a radio capable of communicating using at least a first RAT and a second RAT. The UE may determine whether current path loss for the first RAT exceeds a maximum path loss. Based on the results of determining whether the current path loss for the first RAT exceeds the maximum path loss, the UE may determine whether to operate in the single RAT mode or the dual RAT mode. Accordingly, based on this determination, the UE may operate in the single RAT mode or the dual RAT mode based on the determination.
Abstract:
A computing device can access a calendar entry having an associated time and an associated location, in a calendar application. The computing device can dynamically determine an estimated travel time to the location associated with the calendar entry. The computing device can provide an alarm indication for the calendar entry at a time based on the estimated travel time.
Abstract:
Apparatuses, systems, and methods for enhancement of network slicing for a UE. A UE may receive, from an AMF of a network, application related information associated with network slice data routing for data associated with an application. The information may be provided to the network by network slice customers. The UE may, in response to application initiation, determine traffic routing for data associated with the application. Traffic routing may be based on the application related information and a UE configuration associated with user privacy (e.g., user privacy setting) associated with the application. When the user UE configuration is enabled, the data may be routed via a default network slice and when the UE configuration is disabled, the data may be routed via a network slice indicated by the application related information. The UE configuration may be indicated by the application via a Boolean flag and/or via a user interface setting.
Abstract:
A user equipment (UE) or other device performs service discovery of edge computing resources in a cellular network system and dynamic offloading of UE application tasks to discovered edge computing resources. As part of the discovery process, the device (e.g., the UE) may request edge server site capability information. When performing dynamic offloading, the UE may obtain (collect and/or receive) information regarding channel conditions, cellular network parameters or application requirements and dynamically determine whether a task of the application executing on the UE should be offloaded to an edge server or executed locally on the UE. In making decisions between offloaded or local execution, the UE may use a utility function that takes into account factors such as relative differences in application latency, energy consumption and offloading cost.
Abstract:
A user equipment (UE) or other device performs service discovery of edge computing resources in a cellular network system and dynamic offloading of UE application tasks to discovered edge computing resources. As part of the discovery process, the device (e.g., the UE) may request edge server site capability information. When performing dynamic offloading, the UE may obtain (collect and/or receive) information regarding channel conditions, cellular network parameters or application requirements and dynamically determine whether a task of the application executing on the UE should be offloaded to an edge server or executed locally on the UE. In making decisions between offloaded or local execution, the UE may use a utility function that takes into account factors such as relative differences in application latency, energy consumption and offloading cost.
Abstract:
Apparatuses, systems, and methods for enhancement of network slicing for a UE. A UE may receive, from an AMF of a network, application related information associated with network slice data routing for data associated with an application. The information may be provided to the network by network slice customers. The UE may, in response to application initiation, determine traffic routing for data associated with the application. Traffic routing may be based on the application related information and a UE configuration associated with user privacy (e.g., user privacy setting) associated with the application. When the user UE configuration is enabled, the data may be routed via a default network slice and when the UE configuration is disabled, the data may be routed via a network slice indicated by the application related information. The UE configuration may be indicated by the application via a Boolean flag and/or via a user interface setting.