Abstract:
A method for etching a target layer on a substrate by a dry etching process includes at least one etching cycle, wherein an etching cycle includes: depositing a carbon halide film using reactive species on the target layer on the substrate; and etching the carbon halide film using a plasma of a non-halogen hydrogen-containing etching gas, which plasma alone does not substantially etch the target layer, thereby generating a hydrogen halide as etchant species at a boundary region of the carbon halide film and the target layer, thereby etching a portion of the target layer in the boundary region.
Abstract:
A method for etching a target layer on a substrate by a dry etching process includes at least one etching cycle, wherein an etching cycle includes: depositing a halogen-containing film using reactive species on the target layer on the substrate; and etching the halogen-containing film using a plasma of a non-halogen etching gas, which plasma alone does not substantially etch the target layer, to generate etchant species at a boundary region of the halogen-containing film and the target layer, thereby etching a portion of the target layer in the boundary region.
Abstract:
A method is for hydrophobization of a surface of a silicon-containing film by atomic layer deposition (ALD), wherein the surface is subjected to atmospheric exposure. The method includes: (i) providing a substrate with a silicon-containing film formed thereon; and (ii) forming on a surface of the silicon-containing film a hydrophobic atomic layer as a protective layer subjected to atmospheric exposure, by exposing the surface to a silicon-containing treating gas without exciting the gas. The treating gas is capable of being chemisorbed on the surface to form a hydrophobic atomic layer thereon.
Abstract:
A method for repairing process-related damage of a dielectric film includes: (i) adsorbing a first gas containing silicon on a surface of the damaged dielectric film without depositing a film in the absence of reactive species, (ii) adsorbing a second gas containing silicon on a surface of the dielectric film, followed by applying reactive species to the surface of the dielectric film, to form a monolayer film thereon, and (iii) repeating step (ii). The duration of exposing the surface to the first gas in step (i) is longer than the duration of exposing the surface to the second gas in step (ii).