Abstract:
A method is for hydrophobization of a surface of a silicon-containing film by atomic layer deposition (ALD), wherein the surface is subjected to atmospheric exposure. The method includes: (i) providing a substrate with a silicon-containing film formed thereon; and (ii) forming on a surface of the silicon-containing film a hydrophobic atomic layer as a protective layer subjected to atmospheric exposure, by exposing the surface to a silicon-containing treating gas without exciting the gas. The treating gas is capable of being chemisorbed on the surface to form a hydrophobic atomic layer thereon.
Abstract:
A method for forming a gap-fill SiOCH film on a patterned substrate includes: (i) providing a substrate having recessed features on its surface; (ii) filling the recessed features of the substrate with a SiOCH film which is flowable and non-porous; (iii) after completion of step (ii), exposing the SiOCH film to a plasma including a hydrogen plasma; and (iv) curing the plasma-exposed SiOCH film with UV light.
Abstract:
A method for repairing process-related damage of a dielectric film includes: (i) adsorbing a first gas containing silicon on a surface of the damaged dielectric film without depositing a film in the absence of reactive species, (ii) adsorbing a second gas containing silicon on a surface of the dielectric film, followed by applying reactive species to the surface of the dielectric film, to form a monolayer film thereon, and (iii) repeating step (ii). The duration of exposing the surface to the first gas in step (i) is longer than the duration of exposing the surface to the second gas in step (ii).
Abstract:
A method for repairing process-related damage of a dielectric film includes: (i) adsorbing a first gas containing silicon on a surface of the damaged dielectric film without depositing a film in the absence of reactive species, (ii) adsorbing a second gas containing silicon on a surface of the dielectric film, followed by applying reactive species to the surface of the dielectric film, to form a monolayer film thereon, and (iii) repeating step (ii). The duration of exposing the surface to the first gas in step (i) is longer than the duration of exposing the surface to the second gas in step (ii).
Abstract:
A method is for hydrophobization of a surface of a silicon-containing film by atomic layer deposition (ALD), wherein the surface is subjected to atmospheric exposure. The method includes: (i) providing a substrate with a silicon-containing film formed thereon; and (ii) forming on a surface of the silicon-containing film a hydrophobic atomic layer as a protective layer subjected to atmospheric exposure, by exposing the surface to a silicon-containing treating gas without exciting the gas. The treating gas is capable of being chemisorbed on the surface to form a hydrophobic atomic layer thereon.
Abstract:
A method for forming a modified low-k SiOCH film on a substrate, includes: providing a low-k SiOCH film formed on a substrate by flowable CVD; exposing the low-k SiOCH film to a gas containing a Si—N bond in its molecule without applying electromagnetic energy to increase Si—O bonds and/or Si—C bonds in the film; and then curing the low-k SiOCH film.
Abstract:
A method for restoring a porous surface of a dielectric layer formed on a substrate, includes: (i) providing in a reaction space a substrate on which a dielectric layer having a porous surface with terminal hydroxyl groups is formed as an outer layer; (ii) supplying gas of a Si—N compound containing a Si—N bond to the reaction space to chemisorb the Si—N compound onto the surface with the terminal hydroxyl groups; (iii) irradiating the Si—N compound-chemisorbed surface with a pulse of UV light in an oxidizing atmosphere to oxidize the surface and provide terminal hydroxyl groups to the surface; and (iv) repeating steps (ii) through (iii) to form a film on the porous surface of the dielectric layer for restoration.
Abstract:
A method for forming a gap-fill SiOCH film on a patterned substrate includes: (i) providing a substrate having recessed features on its surface; (ii) filling the recessed features of the substrate with a SiOCH film which is flowable and non-porous; (iii) after completion of step (ii), exposing the SiOCH film to a plasma including a hydrogen plasma; and (iv) curing the plasma-exposed SiOCH film with UV light.
Abstract:
A method for restoring a porous surface of a dielectric layer formed on a substrate, includes: (i) providing in a reaction space a substrate on which a dielectric layer having a porous surface with terminal hydroxyl groups is formed as an outer layer; (ii) supplying gas of a Si—N compound containing a Si—N bond to the reaction space to chemisorb the Si—N compound onto the surface with the terminal hydroxyl groups; (iii) irradiating the Si—N compound-chemisorbed surface with a pulse of UV light in an oxidizing atmosphere to oxidize the surface and provide terminal hydroxyl groups to the surface; and (iv) repeating steps (ii) through (iii) to form a film on the porous surface of the dielectric layer for restoration.
Abstract:
A method for forming a modified low-k SiOCH film on a substrate, includes: providing a low-k SiOCH film formed on a substrate by flowable CVD; exposing the low-k SiOCH film to a gas containing a Si—N bond in its molecule without applying electromagnetic energy to increase Si—O bonds and/or Si—C bonds in the film; and then curing the low-k SiOCH film.