Abstract:
A metrology system includes a radiation source that generates light, an optical modulation unit, a reflector, an interferometer, and a detector. The optical modulating unit temporally separates a first polarization mode of the light from a second polarization mode of the light. The reflector directs the light towards a substrate. The interferometer interferes the diffracted light from a pattern on the substrate, or reflected light from the substrate, and produces output light from the interference. The detector receives the output light from the interferometer. The first and second polarization modes of the output light are temporally separated at the detector. Additionally, an optical rotator can be configured to receive the first polarized light and rotate the polarization of the first polarized light.
Abstract:
A metrology system includes a radiation source that generates light, an optical modulation unit, a reflector, an interferometer, and a detector. The optical modulating unit temporally separates a first polarization mode of the light from a second polarization mode of the light. The reflector directs the light towards a substrate. The interferometer interferes the diffracted light from a pattern on the substrate, or reflected light from the substrate, and produces output light from the interference. The detector receives the output light from the interferometer. The first and second polarization modes of the output light are temporally separated at the detector.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an illumination arrangement to direct radiation across a pupil of the apparatus, the illumination arrangement including an illumination source to provide multiple-wavelength radiation of substantially equal polarization and a wave plate to alter the polarization of the radiation in dependency of the wavelength, such that radiation of different polarization is supplied; an objective to direct radiation on the mark using the radiation supplied by the illumination arrangement while scanning the radiation across the mark in a scanning direction; a radiation processing element to process radiation that is diffracted by the mark and received by the objective; and a detection arrangement to detect variation in an intensity of radiation output by the radiation processing element during the scanning and to calculate from the detected variation a position of the mark in at least a first direction of measurement.
Abstract:
A system includes a radiation source, first and second phased arrays, and a detector. The first and second phased arrays include optical elements, a plurality of ports, waveguides, and phase modulators. The optical elements radiate radiation waves. The waveguides guide radiation from a port of the plurality of ports to the optical elements. Phase modulators adjust phases of the radiation waves. One or both of the first and second phased arrays form a first beam and/or a second beam of radiation directed toward a target structure based on the port coupled to the radiation source. The detector receives radiation scattered by the target structure and generates a measurement signal based on the received radiation.
Abstract:
Apparatus for, and method of, measuring a parameter of an alignment mark on a substrate in which an optical system is arranged to receive at least one diffraction order from the alignment mark and the diffraction order is modulated at a pupil or a wafer conjugate plane of the optical system, a solid state optical device is arranged to receive the modulated diffraction order, and a spectrometer is arranged to receive the modulated diffraction order from the solid state optical device and to determine an intensity of one or more spectral components in the modulated diffraction order.
Abstract:
A system includes a radiation source, first and second phased arrays, and a detector. The first and second phased arrays include optical elements, a plurality of ports, waveguides, and phase modulators. The optical elements radiate radiation waves. The waveguides guide radiation from a port of the plurality of ports to the optical elements. Phase modulators adjust phases of the radiation waves. One or both of the first and second phased arrays form a first beam and/or a second beam of radiation directed toward a target structure based on the port coupled to the radiation source. The detector receives radiation scattered by the target structure and generates a measurement signal based on the received radiation.
Abstract:
A metrology system includes a radiation source that generates light, an optical modulation unit, a reflector, an interferometer, and a detector. The optical modulating unit temporally separates a first polarization mode of the light from a second polarization mode of the light. The reflector directs the light towards a substrate. The interferometer interferes the diffracted light from a pattern on the substrate, or reflected light from the substrate, and produces output light from the interference. The detector receives the output light from the interferometer. The first and second polarization modes of the output light are temporally separated at the detector. Additionally, an optical rotator can be configured to receive the first polarized light and rotate the polarization of the first polarized light.
Abstract:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an illumination arrangement to direct radiation across a pupil of the apparatus, the illumination arrangement including an illumination source to provide multiple-wavelength radiation of substantially equal polarization and a wave plate to alter the polarization of the radiation in dependency of the wavelength, such that radiation of different polarization is supplied; an objective to direct radiation on the mark using the radiation supplied by the illumination arrangement while scanning the radiation across the mark in a scanning direction; a radiation processing element to process radiation that is diffracted by the mark and received by the objective; and a detection arrangement to detect variation in an intensity of radiation output by the radiation processing element during the scanning and to calculate from the detected variation a position of the mark in at least a first direction of measurement.
Abstract:
A detection system (200) includes an illumination system (210), a first optical system (232), a phase modulator (220), a lock-in detector (255), and a function generator (230). The illumination system is configured to transmit an illumination beam (218) along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target (204) on a substrate (202). The first optical system is further configured to transmit a signal beam including diffraction order sub-beams (222, 224, 226) that are diffracted by the diffraction target. The phase modulator is configured to modulate the illumination beam or the signal beam based on a reference signal. The lock-in detector is configured to collect the signal beam and to measure a characteristic of the diffraction target based on the signal beam and the reference signal. The function generator is configured to generate the reference signal for the phase modulator and the lock-in detector.