Abstract:
A method of inspection for defects on a substrate, such as a reflective reticle substrate, and associated apparatuses. The method includes performing the inspection using inspection radiation obtained from a high harmonic generation source and having one or more wavelengths within a wavelength range of between 20 nm and 150 nm. Also, a method including performing a coarse inspection using first inspection radiation having one or more first wavelengths within a first wavelength range; and performing a fine inspection using second inspection radiation having one or more second wavelengths within a second wavelength range, the second wavelength range comprising wavelengths shorter than the first wavelength range.
Abstract:
A metrology apparatus uses radiation (304) in an EUV waveband. A first detection system (333) includes a spectroscopic grating (312) and a detector (313) for capturing a spectrum of the EUV radiation after interaction with a target (T). Properties of the target are measured by analyzing the spectrum. The radiation (304) further includes radiation in other wavebands such as VUV, DUV, UV, visible and IR. A second detection system (352, 372, 382) is arranged to receive at least a portion of radiation (350) reflected by the first spectroscopic grating and to capture a spectrum (SA) in one or more of said other wavebands. The second waveband spectrum can be used to enhance accuracy of the measurement based on the EUV spectrum, and/or it can be used for a different measurement. Other types of detection, such as polarization can be used instead or in addition to spectroscopic gratings.
Abstract:
Hybrid metrology apparatus (1000, 1100, 1200, 1300, 1400) measures a structure (T) manufactured by lithography. An EUV metrology apparatus (244, IL1/DET1) irradiates the structure with EUV radiation and detects a first spectrum from the structure. Another metrology apparatus (240, IL2/DET2) irradiates the structure with second radiation comprising EUV radiation or longer-wavelength radiation and detects a second spectrum. Using the detected first spectrum and the detected second spectrum together, a processor (MPU) determines a property (CD/OV) of the structure. The spectra can be combined in various ways. For example, the first detected spectrum can be used to control one or more parameters of illumination and/or detection used to capture the second spectrum, or vice versa. The first spectrum can be used to distinguish properties of different layers (T1, T2) in the structure. First and second radiation sources (SRC1, SRC2) may share a common drive laser (LAS).
Abstract:
A lithographic manufacturing system produces periodic structures with feature sizes less than 10 nm and a direction of periodicity (D). A beam of radiation (1904) having a range of wavelengths in the EUV spectrum (1-100 nm or 1-150 nm) is focused into a spot (S) of around 5 μm diameter. Reflected radiation (1908) is broken into a spectrum (1910) which is captured (1913) to obtain a target spectrum signal (ST). A reference spectrum is detected (1914) to obtain a reference spectrum signal (SR). Optionally a detector (1950) is provided to obtain a further spectrum signal (SF) using radiation diffracted at first order by the grating structure of the target. The angle of incidence (α) and azimuthal angle (φ) are adjustable. The signals (ST, SR, SF) obtained at one or more angles are used to calculate measured properties of the target, for example CD and overlay.
Abstract:
A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets which are for measuring overlay using X-ray scattering and small targets which are for measuring overlay by diffraction of visible radiation. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
Abstract:
A method uses a lithographic apparatus to form an inspection target structure upon a substrate. The method comprises forming the periphery of the inspection target structure so as to provide a progressive optical contrast transition between the inspection target structure and its surrounding environment. This may be achieved by providing a progressive change in the optical index at the periphery of the target structure.