Abstract:
An architecture is described that can utilize photo-sensors embedded in a substantially transparent layer of a UI display for tracking objects that approach or hover over the UI display. The photo-sensors can be configured to detect light of certain wavelengths (e.g., visible light, infrared light) that are propagated toward the UI display, while ignoring light emanating from the UI display when displaying content. Accordingly, by examining various characteristics of the incoming light such as intensity, the architecture can identify a location of a shadow incident upon the display caused by an approaching or hovering selector object blocking portions of incoming light. Additionally or alternatively, the architecture can identify a location of higher intensity for light emanating from the selector object.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, system having a controller to receive from a set-top box (STB) a request for assistance, identify a subscriber account associated with the STB, identify from the subscriber account a subscription grade, select one of a plurality of subscriber support services according to the subscriber grade, and establish communications between the STB and the selected subscriber support service. Other embodiments are disclosed.
Abstract:
A network may include a method that includes, for example, receiving a communication request responsive to a telephone number mapping query failure, where the communication request is initiated by an originating communication device requesting a communication session with a terminating communication device, foregoing initiating the communication session as a circuit-switched communication session responsive to determining that the originating communication device and the terminating communication device are enabled to use packet-switched communications, and instructing a second network node to initiate the communication session as a packet-switched communication session between the originating communication device and the terminating communication device responsive to the determination. Other embodiments are disclosed.
Abstract:
An architecture is described that can utilize photo-sensors embedded in a substantially transparent layer of a UI display for tracking objects that approach or hover over the UI display. The photo-sensors can be configured to detect light of certain wavelengths (e.g., visible light, infrared light) that are propagated toward the UI display, while ignoring light emanating from the UI display when displaying content. Accordingly, by examining various characteristics of the incoming light such as intensity, the architecture can identify a location of a shadow incident upon the display caused by an approaching or hovering selector object blocking portions of incoming light. Additionally or alternatively, the architecture can identify a location of higher intensity for light emanating from the selector object.
Abstract:
An architecture is described that can utilize photo-sensors embedded in a substantially transparent layer of a UI display for tracking objects that approach or hover over the UI display. The photo-sensors can be configured to detect light of certain wavelengths (e.g., visible light, infrared light) that are propagated toward the UI display, while ignoring light emanating from the UI display when displaying content. Accordingly, by examining various characteristics of the incoming light such as intensity, the architecture can identify a location of a shadow incident upon the display caused by an approaching or hovering selector object blocking portions of incoming light. Additionally or alternatively, the architecture can identify a location of higher intensity for light emanating from the selector object.
Abstract:
A content selection server including a processor configured to receive personal preference information from a plurality of personal media devices, select content based on the personal preference information, and provide playback of the content.
Abstract:
Systems and methods to select peered border elements for a communication session based on Quality-of-Service (QoS) are disclosed. An example method includes selecting a peered border element to handle a communication session based on a list of peered border elements (PBEs) and a composite QoS parameter of the communication session, the list of PBEs being prioritized based on respective statuses of PBEs in the list, the first composite QoS parameter being based on weighted QoS parameters of the communication session including a grade of service (GoS) parameter of the communication session and a preferred mode of communication for a VoIP device of a called party in the communication session, the GoS parameter including an attempted performance range and an expected performance range of the communication session; and controlling a second server to generate a QoS authorization token to reserve network resources associated with the selected PBE.
Abstract:
A method of determining demand for multimedia content in a multimedia provider network includes receiving a content demand statistics (CDS) request from a client application where the request identifies a subscriber set. Responsive to the CDS request, selected CDS data is retrieved from a CDS subsystem. The CDS data is indicative of demand for multimedia content among subscribers in the subscriber set. The retrieved CDS data is delivered to the client application. The selected data may be selected from past data, present data, and future data. The CDS request indicates a set of buddy subscribers and the messaging server retrieves CDS data associated with the buddy subscribers. A security subsystem may be accessed and to determine, prior to retrieving CDS data for a particular buddy subscriber, whether the particular buddy subscriber has authorized the requesting subscriber.
Abstract:
An architecture is described that can utilize photo-sensors embedded in a substantially transparent layer of a UI display for tracking objects that approach or hover over the UI display. The photo-sensors can be configured to detect light of certain wavelengths (e.g., visible light, infrared light) that are propagated toward the UI display, while ignoring light emanating from the UI display when displaying content. Accordingly, by examining various characteristics of the incoming light such as intensity, the architecture can identify a location of a shadow incident upon the display caused by an approaching or hovering selector object blocking portions of incoming light. Additionally or alternatively, the architecture can identify a location of higher intensity for light emanating from the selector object.
Abstract:
A method and an apparatus for providing a customer premise based feature. For example, the method receives a call directed to a customer, wherein the call is associated with a customer premise based feature. The method then forwards the call to a customer premise based communication system located at a location of the customer, wherein the customer premise based feature is implemented locally by the customer premise based communication system.