Abstract:
The invention discloses an optical interferometer which can be used to provide simultaneous measurements over multiple path lengths and methods to employ such an interferometer as to achieve a variety of functions covering simultaneous measurements at different depths separated by an increment of a multiple differential delay matched in the interferometer as well as imaging. Optical sensors, optical coherence tomography (OCT) set-ups, optical sensing methods and OCT methods are disclosed which can provide: (i) multiple en-face images at several depths with dynamic dispersion compensation, (ii) fast acquisition of cross sections, (iii) fast acquisition of 3D volumes of a scattering object while maintaining dynamic focus; (iv) fast acquisition of long axial measurement profiles, non mechanical, with dynamic focus, range scalable, with applications in tracking and OTDR. Methods are disclosed on the combination of scanning regimes and modes of operation to achieve versatile functionality in measurements, in the 3D imaging of moving tissue such as the eye, heart, or moving embryos or functional/low noise imaging by making use of angular compounding or polarisation. A method for elimination of axial movement effects in measuring the flow profile is also disclosed.
Abstract:
Optical mapping apparatus for imaging an object, comprising an optical coherence tomography (OCT) system including an OCT source, an OCT reference path leading from the OCT source to an OCT receiver, an OCT object path leading from the object to the OCT coupler, an OCT depth scanner adapted to alter at least one of the OCT reference path and the OCT receiver path. A confocal system is provided including a confocal optical receiver a confocal path leading from the object to the confocal optical receiver via a confocal input aperture. An adaptive optics (AO) system is provided to correct optical aberrations in the OCT object path and the confocal path.
Abstract:
OCT apparatus includes an interferometer, having an input beam splitter and a 50/50 output splitter. The splitting ratio of the input splitter may be optimized depending on the source power of light source and on the mismatch of the balanced receiver. The input splitter is a plate beam-splitter to minimize the stray reflected light in the interferometer and allow sequential operation of the apparatus in the OCT or in the confocal regime. The switching between the two regimes may be at will, or synchronous with the en-face scanning which results in quasi-simultaneous OCT/confocal imaging or in alternatives frames, confocal and OCT. By using polarization sensitive elements, two channels are provided in each regime, OCT and confocal. The two confocal polarization sensitive channels may allow adjustments of compensators prior to OCT measurements or OCT imaging.
Abstract:
The invention discloses an optical interferometer which can be used to provide simultaneous measurements over multiple path lengths and methods to employ such an interferometer as to achieve a variety of functions covering simultaneous measurements at different depths separated by an increment of a multiple differential delay matched in the interferometer as well as imaging. Optical sensors, optical coherence tomography (OCT) set-ups, optical sensing methods and OCT methods are disclosed which can provide: (i) multiple en-face images at several depths with dynamic dispersion compensation, (ii) fast acquisition of cross sections, (iii) fast acquisition of 3D volumes of a scattering object while maintaining dynamic focus; (iv) fast acquisition of long axial measurement profiles, non mechanical, with dynamic focus, range scalable, with applications in tracking and OTDR. Methods are disclosed on the combination of scanning regimes and modes of operation to achieve versatile functionality in measurements, in the 3D imaging of moving tissue such as the eye, heart, or moving embryos or functional/low noise imaging by making use of angular compounding or polarisation. A method for elimination of axial movement effects in measuring the flow profile is also disclosed.
Abstract:
OCT cross section images of a part of a curved object are displayed by creating a series of image points and placing each image point into a corrected image in such a way that the positions of scattering points within the image coincide with or are at least closer to their real spatial distribution within the curved object.
Abstract:
Optical mapping apparatus for imaging an object, comprising an optical coherence tomography (OCT) system including an OCT source, an OCT reference path leading from the OCT source to an OCT receiver, an OCT object path leading from the object to the OCT coupler, an OCT depth scanner adapted to alter at least one of the OCT reference path and the OCT receiver path. A confocal system is provided including a confocal optical receiver a confocal path leading from the object to the confocal optical receiver via a confocal input aperture. An adaptive optics (AO) system is provided to correct optical aberrations in the OCT object path and the confocal path.
Abstract:
A method for axial scanning to be used in transmission in one of the arms of OCT interferometers, with reduced walk-off and loss. Procedures are disclosed of using the scanning delay line in conjunction with the transverse scanners to generate B and C-scan OCT images.
Abstract:
An adapter which can make use of the devices in any commercially available digital cameras to accomplish different functions, the invention admits addition of confocal detection and provides simultaneous measurements or imaging in at least two channels, confocal and OCT, where the confocal channel provides an en-face image simultaneous with the acquisition of OCT cross sections, to guide the acquisition as well as to be used subsequently in the visualization of OCT images. Different technical solutions are provided for the assembly of one or two digital cameras which together with such adapters lead to modular and portable high resolution imaging systems which can accomplish various functions with a minimum of extra components while adapting the elements in the digital camera.
Abstract:
A spectral interferometry apparatus and method is provided to supply unambiguous profiles (A-scans free of mirror terms) of the reflectivity versus optical path difference and make difference between the positive and negative optical path difference or provide output in a selected interval of optical path differences. The apparatus comprises object optics that transfer a beam from an optical source to a target object (55) to produce an object beam and reference optics that produce a reference beam. Displacing means (57) are provided to produce a gap (g) between the object beam (41′) and the reference beam (42′). Optical spectrum dispersing means (7) such as a grating or a prism receive the two relatively displaced beams, and disperse their spectral content onto a reading element such as a CCD. The combination of the displacing means and the optical spectrum dispersing means creates an intrinsic optical delay between the wavetrains of the object beam and the reference beam which can be used with the optical path difference in the interferometer to generate a channelled spectrum for the optical path difference in the interferometer on the reading element.
Abstract:
A spectral interferometry apparatus and method are disclosed, that can be used to monitor or measure an unknown length by following a characteristic of an indicating signal. The measurement is performed by adjusting an optical path difference (OPD) in an interferometer part of an interferometer configuration until sound or light or both are obtained with the desired strength and pitch. Embodiments are presented where the unknown length is the eye length. Spectral interrogation of the interferometer optical output is achieved by reading the signal of an analogue photodetector array in a spectrometer or by tuning a swept source and processing the signal of a photodetector. Sound of different pitches are produced either directly in this process, or by using a nonlinear amplifier, or a mixer. For enhanced signal, the array may be driven by a nonlinear clock or the swept source may be driven by a distorted driving signal.