摘要:
Disclosed herein are systems, apparatuses, and methods for creating a system of wireless-enabled components (WECs). Such a system includes a server and a plurality of wireless-enabled component (WECs). Each WEC includes a functional resource (e.g., a processing resource and/or a memory resource) and is configured for wireless communication with the server and one or more other WECs. A first WEC is configured to wirelessly upload, to the server, an availability of the functional resource of the first WEC. The first WEC is further configured to wirelessly download, from the server, a linking resource for linking with one or more of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
摘要:
Disclosed herein is a configurable system of wireless-enabled components (WECs) and applications thereof. The system includes a plurality of WECs and a controller. Each WEC comprises a functional resource and is adapted to wirelessly communicate with other WECs. The controller is adapted to dynamically configure the functional resource of each WEC and wireless communications among the plurality of WECs to form a field-programmable communications array. The controller may be one of the plurality of WECs. The plurality of WECs may be located on a single chip, on multiple chips of a single device, or on multiple chips of multiple devices.
摘要:
Embodiments of the present invention are directed to a scalable wireless bus for intra-chip and inter-chip communication. The scalable wireless bus includes a plurality of wireless-enabled components (WECs). In an embodiment, the scalable wireless bus may have at least one of the number of links among WECs and the capacity of said links adapted based on one or more factors. For example, the number of links and the capacity of the links may be adapted according to one or more of, among other factors, expected activity level over the wireless bus, desired power consumption, delay, and interference levels.
摘要:
Embodiments of the present invention are directed to a wireless resource borrowing environment enabled by a wireless bus comprising a plurality of wireless-enabled components (WECs). In an embodiment, the WECs use the wireless bus to share resource information (including resource availability information) among each others. For example, a WEC may share with other WECs information regarding its processing and memory resources. The WEC may then use the shared resource information to identify resources at other WECs that it may borrow to perform certain tasks. In an embodiment, resource borrowing is performed according to a cost-based method which optimizes resource borrowing according to a cost function. The cost function may be designed to optimize resource borrowing according to any combination of one or more factors, including power consumption, processing speed, delay, interference, error rate, reliability, load at the lender WEC, computing capability at the lender WEC, etc.
摘要:
Disclosed herein are systems, apparatuses, and methods for wirelessly coupling functional resources. Such a system includes a plurality of co-located, wireless-enabled functional units of a first type and a plurality of co-located, wireless-enabled functional units of a second type. At least one of the wireless-enabled functional units of the first type is wirelessly coupled with one or more of the wireless-enabled functional units of the second type. The wireless-enabled functional units of the first type may be wireless-enabled processing units, and the wireless-enabled functional units of the second type may be wireless-enabled memory units. In an example, the plurality of wireless-enabled functional units of the first type are co-located on a first chip, and the plurality of wireless-enabled functional units of the second type are co-located on a second chip. The first chip and the second chip may be located in a single device or in separate devices.
摘要:
Embodiments of the present invention are directed to a wireless bus for intra-chip and inter-chip communication having adaptable links and routes among wireless-enabled components (WECs) of the wireless bus. Links and routes may be adapted according to one or more of, among other factors, the relative position of WECs, available capabilities (e.g., communication capabilities) at WECs, availability of resources at WECs, and the physical environment.
摘要:
Disclosed herein are systems, apparatuses, and methods for locating wireless-enabled components, and applications thereof. Such an apparatus includes a wireless-enabled component (WEC), which may be a functional block of an integrated circuit (IC), an IC, or a device that includes an IC. The WEC includes a functional module (e.g., a processing resource or a memory resource) and an antenna element coupled to the functional module. The antenna element is configured to (i) transmit a search signal to locate a proximally situated WEC and (ii) transmit a communication signal to communicate with the proximally situated WEC. The antenna element may be a phased array, an electrically steered phased array, a mechanically steered phased array, a directional antenna, a mechanically steered directional antenna, an RF antenna, an optical antenna, and/or any combination thereof.
摘要:
Methods and apparatus are disclosed to simultaneously, wirelessly test semiconductor components formed on a semiconductor wafer. The semiconductor components transmit respective outcomes of a self-contained testing operation to wireless automatic test equipment via a common communication channel. Multiple receiving antennas observe the outcomes from multiple directions in three dimensional space. The wireless automatic test equipment determines whether one or more of the semiconductor components operate as expected and, optionally, may use properties of the three dimensional space to determine a location of one or more of the semiconductor components. The wireless testing equipment may additionally determine performance of the semiconductor components by detecting infrared energy emitted, transmitted, and/or reflected by the semiconductor wafer before, during, and/or after a self-contained testing operation.
摘要:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
摘要:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.