摘要:
The invention relates to a device for holding a beam splitter element having an optically active beam splitter layer in an optical imaging device, the beam splitter element being connected to at least one support element that is fastened in the housing of the imaging device. The connection between the beam splitter element and said at least one support element is designed in such a way that the position of the beam splitter layer of the beam splitter element remains nearly constant relative to the housing independently of temperatures and of thermal stresses acting upon the beam splitter element.
摘要:
An objective, in particular a projection objective in microlithography for producing semiconductor components, is assembled from a number of individual housing structures (4, 5), optical elements being arranged in each housing structure (4, 5), and a number of optical axes (15, 16, 18, 35) being formed by the housing structures (4, 5). At least one first housing structure (4) is provided with seats (22, 23, 24, 25) on which one or more further housing structures (5) and/or optical subassemblies (6, 8, 11, 14) are adjusted and are connected to the first housing structure (4).
摘要:
A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
摘要:
High precision optical components, for example CaF2 lenses in lithographic systems for the production of integrated circuits, often suffer from stress induced birefringence and other imperfections. For altering the optical properties in a confined region of the optical component, the latter is exposed to a beam of ions having an energy preferably in the order 100 MeV/u. This results in a modification of the optical properties due to an interaction of the ions with the surrounding medium the optical component consists of. By carefully choosing the parameters of the process, it is possible to alter the refractive index or the mechanical stress distribution or other optical properties within a confined region of this medium.
摘要:
A arrangement serves for the adjustment of an optical element (1), in particular of a lens in an optical system, in particular in a projection lens system for semiconductor lithography. The optical element (1) is mounted in a mount (3) by means of a number of bearing feet (2) distributed over the circumference of the optical element (1) and is selectively deformable by actuators (5). At least some of the bearing feet (2) are engaged by the actuators (5) in a region of the respective bearing foot (2) in such a way that the respective bearing foot (2) can be displaced in the direction of the optical axis (7).
摘要:
An imaging device in a projection exposure machine for microlithography has at least one optical element and at least one manipulator, having a linear drive, for manipulating the position of the optical element. The linear drive has a driven subregion and a nondriven subregion, which are movable relative to one another in the direction of a movement axis. The subregions are interconnected at least temporarily via functional elements with an active axis and via functional elements with an active direction at least approximately parallel to the movement axis.
摘要:
An imaging device in a projection exposure machine for microlithography has at least one optical element and at least one manipulator, having a linear drive, for manipulating the position of the optical element. The linear drive has a driven subregion and a nondriven subregion, which are movable relative to one another in the direction of a movement axis. The subregions are interconnected at least temporarily via functional elements with an active axis and via functional elements with an active direction at least approximately parallel to the movement axis.
摘要:
An arrangement serves for the adjustment of an optical element (1), in particular of a lens in an optical system, in particular in a projection lens system for semiconductor lithography. The optical element (1) is mounted in a mount (3) by means of a number of bearing feet (2) distributed over the circumference of the optical element (1) and is selectively deformable by actuators (5). At least some of the bearing feet (2) are engaged by the actuators (5) in a region of the respective bearing foot (2) in such a way that the respective bearing foot (2) can be displaced in the direction of the optical axis (7).
摘要:
A projection exposure apparatus for microlithography has a light source, an illumination system, a mask-positioning system and a projection lens. The latter has a system aperture plane and an image plane and contains at least one lens that is made of a material which has a birefringence dependent on the transmission angle. The exposure apparatus further has an optical element, which has a position-dependent polarization-rotating effect or a position-dependent birefringence. This element, which is provided close to a pupil plane of the projection exposure apparatus, compensates at least partially for the birefringent effects produced in the image plane by the at least one lens.
摘要:
A arrangement serves for the adjustment of an optical element (1), in particular of a lens in an optical system, in particular in a projection lens system for semiconductor lithography. The optical element (1) is mounted in a mount (3) by means of a number of bearing feet (2) distributed over the circumference of the optical element (1) and is selectively deformable by actuators (5). At least some of the bearing feet (2) are engaged by the actuators (5) in a region of the respective bearing foot (2) in such a way that the respective bearing foot (2) can be displaced in the direction of the optical axis (7).