摘要:
A semiconductor diode (30) has an anode (32), a cathode (33) and a semiconductor volume (31) provided between the anode (32) and the cathode (33). An electron mobility and/or hole mobility within a zone (34) of the semiconductor volume (31) that is situated in front of the cathode (33) is reduced relative to the rest of the semiconductor volume (31).
摘要:
A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T1 in the semiconductor body between the p-conducting zone and the n-conducting zone. The method includes providing the semiconductor body, producing the p-doped zone by the diffusion of an impurity that forms an acceptor in a first direction into the semiconductor body, and producing the n-conducting zone by the implantation of protons in the first direction into the semiconductor body into a depth T2>T1 and the subsequent heat treatment of the semiconductor body in order to form hydrogen-induced donors.
摘要:
A method for fabricating a semiconductor body is presented. The semiconductor body includes a p-conducting zone, an n-conducting zone and a pn junction in a depth T1 in the semiconductor body between the p-conducting zone and the n-conducting zone. The method includes providing the semiconductor body, producing the p-doped zone by the diffusion of an impurity that forms an acceptor in a first direction into the semiconductor body, and producing the n-conducting zone by the implantation of protons in the first direction into the semiconductor body into a depth T2>T1 and the subsequent heat treatment of the semiconductor body in order to form hydrogen-induced donors.
摘要:
A semiconductor component and method of making a semiconductor component is disclosed. In one embodiment, the semiconductor component includes a drift region of a first conductivity type, a body region of a second conductivity type, and a trench extending into the body region. A semiconductor region of the first conductivity type is in contact with the drift region and the body region and is arranged at a distance from the trench.
摘要:
A semiconductor component and method of making a semiconductor component is disclosed. In one embodiment, the semiconductor component includes a drift region of a first conductivity type, a body region of a second conductivity type, and a trench extending into the body region. A semiconductor region of the first conductivity type is in contact with the drift region and the body region and is arranged at a distance from the trench.
摘要:
A semiconductor element includes a semiconductor layer having a first doping density, a metallization, and a contact area located between the semiconductor layer and the metallization. The contact area includes at least one first semiconductor area that has a second doping density higher than the first doping density, and at least one second semiconductor area in the semiconductor layer. The second semiconductor area is in contact with the metallization and provides lower ohmic resistance to the metallization than a direct contact between the semiconductor layer and the metallization provides or would provide.
摘要:
A semiconductor element includes a semiconductor layer having a first doping density, a metallization, and a contact area located between the semiconductor layer and the metallization. The contact area includes at least one first semiconductor area that has a second doping density higher than the first doping density, and at least one second semiconductor area in the semiconductor layer. The second semiconductor area is in contact with the metallization and provides lower ohmic resistance to the metallization than a direct contact between the semiconductor layer and the metallization provides or would provide.
摘要:
A method for producing semiconductor elements comprises forming a hydrogen-correlated doping in a treatment region The treatment region comprises at least part of a region which (i) lies outside an inner contiguous zone containing an integrated semiconductor circuit arrangement but not the respective associated separating zones and (ii) lies within an outer contiguous zone containing the respective integrated semiconductor circuit arrangement (10) and also the respective associated separating zones.
摘要:
According to one embodiment, a method for the production of a stop zone in a doped zone of a semiconductor body comprises irradiating the semiconductor body with particle radiation in order to produce defects in a crystal lattice of the semiconductor body. The semiconductor body is exposed to an environment containing dopant atoms, during which dopant atoms are indiffused into the semiconductor body at an elevated temperature.
摘要:
A method for producing a buried stop zone in a semiconductor body and a semiconductor component having a stop zone, has the method steps of: providing a semiconductor body having a first and a second side and a basic doping of a first conduction type, irradiating the semiconductor body via one of the sides with protons, as a result of which protons are introduced into a first region of the semiconductor body situated at a distance from the irradiation side, carrying out a thermal process in which the semiconductor body is heated to a predetermined temperature for a predetermined time duration, the temperature and the duration being chosen such that hydrogen-induced donors are generated both in the first region and in a second region adjacent to the first region in the direction of the irradiation side.