Abstract:
A liquid crystal display may have main column spacers and subspacer column spacers. The column spacers may have cross shapes formed from overlapping perpendicular rectangular column spacer portions respectively located on a color filter layer and a thin-film transistor layer. The column spacers may have a hybrid configuration in which some of the rectangular portions on the thin-film transistor layer extend vertically and some extend horizontally. Column spacers may be formed from planarization layer material, may be formed from locally thickened portions of a planarization layer, and may have circular shapes.
Abstract:
A display may have display layers that form an array of pixels. The display layers may include a first layer that includes a light-blocking matrix and a second layer that overlaps the first layer. The first layer may include quantum dot elements formed in openings in the light-blocking matrix. The light-blocking matrix may be formed from a reflective material such as metal. The second layer may include color filter elements that overlap corresponding quantum dot elements in the first layer. Substrate layers may be used to support the first and second layers and to support thin-film transistor circuitry that is used in controlling light transmission through the array of pixels. The display layers may include a liquid crystal layer, polarizer layers, filter layers for reflecting red and green light and/or other light to enhance light recycling, and layers with angularly dependent transmission characteristics.
Abstract:
An electronic device may have a housing and a display in the housing. The display may have one or more curved edges such as curved edges associated with rounded corners in the display and housing. The display may have an array of pixels. The display may include full-strength pixels and may have a band of antialiasing pixels having selectively reduced strengths to visually smooth content displayed along the curved edges. The antialiasing pixels may include single-opening pixels that each have a single opaque masking layer opening and may include dual-opening pixels that each include a pair of opaque masking layer openings. The single-opening pixels may be stronger than the dual-opening pixels.
Abstract:
A display may include an optical film to promote sunglass-friendly viewing of the display. Displays may include linear polarizers. For example, a liquid crystal display may have a linear polarizer above a liquid crystal layer, whereas an organic light-emitting diode display may have a linear polarizer that forms a portion of a circular polarizer to reduce reflections in the display. Displays that emit linearly polarized light may not be compatible with polarized sunglasses. To ensure an optimal user experience for users wearing sunglasses, displays may include sunglass-friendly optical films. A sunglass-friendly optical film may be a film formed from a birefringent material such as a polymer or liquid crystal. The sunglass-friendly optical film may have an optical axis that is at a 45° angle relative to the optical axis of the underlying linear polarizer. The sunglass-friendly optical film may be patterned to have reduced thickness regions.
Abstract:
A display may have upper and lower display layers. A layer of liquid crystal material may be interposed between the upper and lower display layers. The display layers may have substrates. The display layers may include a color filter layer having an array of color filter elements on a glass substrate and a thin-film transistor layer having a layer of thin-film transistor circuitry on a glass substrate. Dielectric layers within the display layers such as dielectric layers within the thin-film transistor layer may have differing indices of refraction. Reflections and color shifts due to index of refraction discontinuities may be minimized by interposing graded index dielectric layers between adjacent layers with different indices. The graded index layers may be formed from structures with a continuously varying index of refraction or structures with a step-wise varying index of refraction.
Abstract:
A display may have display layers that form an array of pixels. The display layers may include a first layer that includes a light-blocking matrix and a second layer that overlaps the first layer. The first layer may include quantum dot elements formed in openings in the light-blocking matrix. The light-blocking matrix may be formed from a reflective material such as metal. The second layer may include color filter elements that overlap corresponding quantum dot elements in the first layer. Substrate layers may be used to support the first and second layers and to support thin-film transistor circuitry that is used in controlling light transmission through the array of pixels. The display layers may include a liquid crystal layer, polarizer layers, filter layers for reflecting red and green light and/or other light to enhance light recycling, and layers with angularly dependent transmission characteristics.
Abstract:
An electronic device may have a housing and a display in the housing. The display may have one or more curved edges such as curved edges associated with rounded corners in the display and housing. The display may have an array of pixels. The display may include full-strength pixels and may have a band of antialiasing pixels having selectively reduced strengths to visually smooth content displayed along the curved edges. The antialiasing pixels may include single-opening pixels that each have a single opaque masking layer opening and may include dual-opening pixels that each include a pair of opaque masking layer openings. The single-opening pixels may be stronger than the dual-opening pixels.
Abstract:
A layer of liquid crystal material may be interposed between display layers. The display layers may include thin-film transistor circuitry having subpixel electrodes for applying electric fields to subpixel portions of the layer of liquid crystal material. Subpixels of different colors may have different shapes and may have different liquid crystal layer thicknesses. These subpixel differences may be configured to slow the switching speed of subpixels of a certain color relative to other subpixels to reduce color motion blur when an object is moved across a black or colored background. The subpixels may have chevron shapes. Subpixels of a first color may have chevron shapes that are less bent than subpixels of second and third colors. In configurations with varying liquid crystal layer thicknesses, the subpixels of the first color may have thicker liquid crystal layers than the subpixels of the second and third colors.
Abstract:
A display may have upper and lower display layers. A layer of liquid crystal material may be interposed between the upper and lower display layers. The display layers may have substrates. The display layers may include a color filter layer having an array of color filter elements on a glass substrate and a thin-film transistor layer having a layer of thin-film transistor circuitry on a glass substrate. Dielectric layers within the display layers such as dielectric layers within the thin-film transistor layer may have differing indices of refraction. Reflections and color shifts due to index of refraction discontinuities may be minimized by interposing graded index dielectric layers between adjacent layers with different indices. The graded index layers may be formed from structures with a continuously varying index of refraction or structures with a step-wise varying index of refraction.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor layer. Column spacers may be formed on the color filter layer to maintain a desired gap between the color filter and thin-film transistor layers. Support pads may be used to support the column spacers. The column spacers and support pads may have comparable thicknesses. Different column spacers may be located at different portions of the support pads to allow the support pad size to be reduced while ensuring adequate support.