Abstract:
In an embodiment, an integrated circuit may include one or more processors. Each processor may include multiple processor cores, and each core has a different design/implementation and performance level. For example, a core may be implemented for high performance, and another core may be implemented at a lower maximum performance, but may be optimized for efficiency. Additionally, in some embodiments, some features of the instruction set architecture implemented by the processor may be implemented in only one of the cores that make up the processor. If such a feature is invoked by a code sequence while a different core is active, the processor may swap cores to the core the implements the feature. Alternatively, an exception may be taken and an exception handler may be executed to identify the feature and activate the corresponding core.
Abstract:
In an embodiment, an integrated circuit may include one or more processors. Each processor may include multiple processor cores, and each core has a different design/implementation and performance level. For example, a core may be implemented for high performance, but may have higher minimum voltage at which it operates correctly. Another core may be implemented at a lower maximum performance, but may be optimized for efficiency and may operate correctly at a lower minimum voltage. The processor may support multiple processor states (PStates). Each PState may specify an operating point and may be mapped to one of the processor cores. During operation, one of the cores is active: the core to which the current PState is mapped. If a new PState is selected and is mapped to a different core, the processor may automatically context switch the processor state to the newly-selected core and may begin execution on that core.
Abstract:
Techniques are disclosed relating to power reduction during execution of instruction loops. Multiple different power saving modes may be used by a processor, such as a first power saving mode after only a few loop iterations (e.g., 2-3) and a second, deeper power saving mode after a greater number of loop iterations. The first power saving mode may include keeping a branch predictor and/or other structures active, but the second power saving mode may include reducing power to the branch predictor and/or other structures. An observation mode and an instruction capture mode may also be used by a processor prior to entering a power saving mode for loop execution. Power saving modes may also be achieved during execution of complex loops having multiple backward branches (e.g., nested loops).
Abstract:
In an embodiment, an integrated circuit may include one or more processors. Each processor may include multiple processor cores, and each core has a different design/implementation and performance level. For example, a core may be implemented for high performance, and another core may be implemented at a lower maximum performance, but may be optimized for efficiency. Additionally, in some embodiments, some features of the instruction set architecture implemented by the processor may be implemented in only one of the cores that make up the processor. If such a feature is invoked by a code sequence while a different core is active, the processor may swap cores to the core the implements the feature. Alternatively, an exception may be taken and an exception handler may be executed to identify the feature and activate the corresponding core.
Abstract:
In an embodiment, a processor may include a register file including one or more sets of registers for one or more data types specified by the ISA implemented by the processor. The processor may have a processor mode in which the context is reduced, as compared to the full context. For example, for at least one of the data types, the registers included in the reduced context exclude one or more of the registers defined in the ISA for that data type. In an embodiment, one half or more of the registers for the data type may be excluded. When the processor is operating in a reduced context mode, the processor may detect instructions that use excluded registers, and may signal an exception for such instructions to prevent use of the excluded registers.
Abstract:
In an embodiment, an integrated circuit may include one or more processors. Each processor may include multiple processor cores, and each core has a different design/implementation and performance level. For example, a core may be implemented for high performance, and another core may be implemented at a lower maximum performance, but may be optimized for efficiency. Additionally, in some embodiments, some features of the instruction set architecture implemented by the processor may be implemented in only one of the cores that make up the processor. If such a feature is invoked by a code sequence while a different core is active, the processor may swap cores to the core the implements the feature. Alternatively, an exception may be taken and an exception handler may be executed to identify the feature and activate the corresponding core.
Abstract:
Techniques are disclosed relating to power reduction during execution of instruction loops. Multiple different power saving modes may be used by a processor, such as a first power saving mode after only a few loop iterations (e.g., 2-3) and a second, deeper power saving mode after a greater number of loop iterations. The first power saving mode may include keeping a branch predictor and/or other structures active, but the second power saving mode may include reducing power to the branch predictor and/or other structures. An observation mode and an instruction capture mode may also be used by a processor prior to entering a power saving mode for loop execution. Power saving modes may also be achieved during execution of complex loops having multiple backward branches (e.g., nested loops).